
CMSC 250: Digital Circuits

Justin Wyss-Gallifent

February 14, 2023

1 Digital Circuits and Gates . . . . . . . . . . . . . . . . . . . . . . 2
2 Circuit Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Input-Output Tables for Circuit Diagrams . . . . . . . . . . . . . 5
4 Boolean Expressions for Circuit Diagrams . . . . . . . . . . . . . 7
5 Circuit Diagrams for Boolean Expressions . . . . . . . . . . . . . 7
6 Boolean Expression for a Given Input-Output Table . . . . . . . 9
7 Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



1 Digital Circuits and Gates

Consider the following digital circuit which represents a battery (on the left)
connected to a bulb (on the right) with a switch (at the top).

It’s obvious that when the switch is closed, the bulb is lit.

Now consider the following two circuits:

Figure 1: Series

Figure 2: Parallel

In the first figure the bulb will be lit only when both swiches are closed (think
AND) whereas in the second figure the bulb will be lit if either or both of the
switches are closed (think OR).

It’s obvious that we could combine these. For example in the following picture
there are three switches and the bulb will be lit if either both the top switches
is closed or the bottom switch is closed, or both of these are true:

2



Figure 3: Combination

It’s obvious that these diagrams could get really messy very quickly so what we’ll
do is strip away the unnecessary details and focus on the control mechanisms
in a more abstract way.

Instead of saying “open” we’ll use the value 0 and instead of saying “closed”
we’ll use the value 1. For purposes of AND, OR, and NOT, treat 0 as False and
1 as True.

In addition we can think of 0 as “off” (no power) and 1 as “on” (power!).

Definition 1.0.1. An AND gate is a control mechanism in which there are two
inputs (each either 0 or 1) and one output (either 0 or 1). The output will be
1 iff both inputs are 1. We draw this as follows:

In this sense:
output = input1 ∧ input2

�

Definition 1.0.2. An OR gate is a control mechanism in which there are two
inputs (each either 0 or 1) and one output (either 0 or 1). The output will be
1 iff one or both inputs are 1. We draw this as follows:

In this sense:
output = input1 ∨ input2

�

To round things out:

3



Definition 1.0.3. A NOT gate is a control mechanism in which there is one
input (either 0 or 1) and one output (either 0 or 1). The output will be 1 iff the
input is 0. We draw this as follows:

In this sense:
output = ∼input1

�

Note 1.0.1. Actually constructing not gates in circuits is a little more chal-
lenging than just using switches and we won’t cover it here.

�

2 Circuit Diagrams

Now for the fun part. We can start creating new circuit diagrams by putting
these together.

p

q

r

Example 2.1. Observe, for example, that if p = 1, q = 1, and r = 0 then
the AND gate outputs 1 ∧ 1 = 1 which feeds into the OR gate along with
r = 0 which then outputs 1 ∨ 0 = 1 which then feeds into the NOT gate
which then outputs ∼1 = 0. So if all three input switches are closed then
the ouput switch is open.

�

There are certain rules for these diagrams, they are the following:

1. Never combine two input wires.

2. A single input wire can be split partway and used as input for two separate
gates.

3. An output wire can be used as input.

4



4. No output of a gate can eventually feed back into that gate.

3 Input-Output Tables for Circuit Diagrams

In order to see how these circuit diagrams function we can draw output tables.
To draw an output table we trace each possible combination of inputs through
the circuit and create a table which shows the results.

Consider this example. In the following when two wires meet at a solid point
then the wire is meeting/splitting whereas if there is no solid point they are not
meeting.

q

p

Example 3.1. Let’s look at the input p = 1 and q = 0. We can follow them
through the logic gates step by step.

1

0

First we follow the values through their first gates and label the outputs
accordingly:

5



1

0

1

0

1

0

1

0

Then we follow the value from our leftmost AND gate and label the output
accordingly:

1

0

1

0

1

0

1

0

1

Then we follow the values from the OR gate and the NOT gate into the
rightmost AND gate and label the output accordingly:

1

0

1

0

1

0

1

0

1

1

1

1

If we try this with the other three possibilities and put them together in a
table we get the following:

p q Output

0 0 0
0 1 1
1 0 1
1 1 0

�

6



4 Boolean Expressions for Circuit Diagrams

Instead of following specific values through we could also trace variables through,
building the result as we go.

Here is the above example. We have filled in as with before but now with
variables:

Example 4.1. Consider:

q

p

p ∨ q

p ∧ q ∼(p ∧ q)

∼(p ∧ q) ∧ (p ∨ q)

Thus we see the boolean expression is:

∼(p ∧ q) ∧ (p ∨ q)

Note that this is the same as XOR, which we also see in the table above.

�

5 Circuit Diagrams for Boolean Expressions

Let’s now reverse the situation. Suppose we are given a boolean expression and
we wish to design a circuit which represents this.

We start filling in the diagram from the right side by looking at the last opera-
tor which was applied. We proceed recursively with the subsequent operators,
working our way left until we hook up the input variables. If input variables
are repeated we just make sure we merge them on the left.

This is a bit confusing to write down and is much more clear with an example.

Example 5.1. Let’s draw a circuit diagram for the boolean expression:

(∼p ∨ q) ∧ ∼r

The last operator we applied was ∧ so we put that on the right. The inputs
are (∼p ∨ q) and ∼r so we can put those as inputs temporarily:

7



∼p ∨ q

∼r

Then we do the same, recursively, for ∼p ∨ q and ∼r:

r

∼p

q

Lastly with the ∼p:

r

p

q

Since the input variables are all different there is no merging to do.

�

Example 5.2. Suppose the previous question had been:

(∼p ∨ q) ∧ ∼p

We would have reached:

8



p

p

q

Now we notice that there are two p on the left. Thus we merge them to
become one input:

p

q

�

6 Boolean Expression for a Given Input-Output
Table

Now for a more challenging and more realistic situation. Suppose we are given
an input-output table and wish to design a circuit which represents the table.

Example 6.1. For example can we design a circuit which produces this:

p q r Output

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

�

9



The systematic way we can find an appropriate boolean expression (and a circuit
if we need it) is to follow these steps:

1. For each row which contains a 1 in the output column construct a ∧-only
statement form which is true only under the conditions of the row.

2. Then simply ∨ these together.

Example 6.2. In the example above the first row has p = 0, q = 0, and
r = 0. We construct the statement form ∼p∧∼q ∧∼r. Note this statement
will then be true only for this row.

Likewise for the second, fourth and eighth rows we construct ∼p ∧ ∼q ∧ r,
∼p ∧ q ∧ r, and p ∧ q ∧ r respectively.

The final boolean expression is then:

(∼p ∧ ∼q ∧ ∼r) ∨ (∼p ∧ ∼q ∧ r) ∨ (∼p ∧ q ∧ r) ∨ (p ∧ q ∧ r)

�

Note that we could go from here directly to a circuit but it would be fairly
complex. In many cases it can be easier to first simplify the boolean expression
first and then build the circuit.

7 Equivalent Circuits

Definition 7.0.1. Two circuits are said to be equivalent if they have boolean
expressions which are logically equivalent.

10


	Digital Circuits and Gates
	Circuit Diagrams
	Input-Output Tables for Circuit Diagrams
	Boolean Expressions for Circuit Diagrams
	Circuit Diagrams for Boolean Expressions
	Boolean Expression for a Given Input-Output Table
	Equivalent Circuits

