
CMSC 250: Recursively Defined Sets and Binary

Trees

Justin Wyss-Gallifent

April 20, 2023

1 Recursively Defined Sets . 2
1.1 Introduction . 2
1.2 Examples . 2

2 Binary Trees . 4
2.1 Introduction . 4
2.2 Recursive Definition . 4
2.3 Properties of Binary Trees 5

1

1 Recursively Defined Sets

1.1 Introduction

Recursive definitions may be used not just to define sequences of numbers but
to define sets.

The basic idea is that we create a set S as follows:

(a) We put some collection of things in S.

(b) We give one or more rules which say: If certain things are in S, then certain
other things must be, too.

1.2 Examples

Example 1.1. We can build a set S of all the even numbers as follows:

(a) We put the number 0 in S.

(b) Whenever a ∈ S we also put a + 2 and a− 2 in S.

It’s fairly obvious (but can be proved!) that this set is the set of all even
numbers.

Example 1.2. Suppose we build a set S as follows:

(a) We put the number 1 in S.

(b) Whenever x ∈ S we also put 2x in S.

It’s fairly obvious (but can be proved!) that this set is the set of all powers
of 2 greater than or equal to 1.

We don’t have to just build sets of numbers. Here are two examples.

Example 1.3. Suppose we build a set S as follows:

(a) We put the pair (0, 0) in S.

(b) Whenever (a, b) ∈ S we also put (a, b + 1) and (a + 1, b + 1), and (a +
2, b + 1) in S.

What else is in the set other than (0, 0)?

Well since (0, 0) ∈ S we know that (0, 1), (1, 1), (2, 1) ∈ S. But then since
(0, 1) ∈ S we know that (0, 2), (1, 2), (2, 2) ∈ S.

This goes on forever and it’s not entirely clear what is and is not in the set.
For example is (10, 10) in the set? How about (10, 20)? How about (20, 10)?

Here is one with strings.

2

Example 1.4. Suppose we build a set S as follows:

(a) We put the string X in S.

(b) Whenever a string s ∈ S we also put Xs and Y sY in S.

What else is in the set other than X?

Well since X ∈ S we know that XX,Y XY ∈ S. But then since Y XY ∈ S
we know that XYXY, Y Y XY Y ∈ S.

This goes on forever and it’s not entirely clear what is and is not in the set.

Here is a somewhat familiar example.

Example 1.5. Suppose p, q, r are the only statement variables we have. The
set S of sentences in propositional logic involving these statement variables
can be be constructed this way:

(a) We put p, q, r in S.

(b) Then:

• If X,Y ∈ S then we put (X ∧ Y) in S.

• If X,Y ∈ S then we put (X ∨ Y) in S.

• If X ∈ S then we put (∼X) in S.

So now we know that for example:

• p, q ∈ S so (p ∧ q) ∈ S.

• (p ∧ q) ∈ S so (∼(p ∧ q)) ∈ S.

• (∼(p ∧ q)), r ∈ S so ((∼(p ∧ q)) ∨ r) ∈ S

• Etc...

This actually then allows us to construct all statements in propositional logic
(or statements equivalent to them) using p, q, and r.

3

2 Binary Trees

2.1 Introduction

Binary trees are another thing which can be built recursively.

Informally a binary tree starts with a root node. The root node can then be
a parent node and connect down to either one or two child nodes. Each child
node can then connect down to either one or two more child nodes. This keeps
going until the tree ends at the leaf nodes, these are the child nodes without
children of their own.

Formally speaking one way to define a binary tree is as a specific type of graph.

Example 2.1. Here is binary tree:

2.2 Recursive Definition

The set of binary trees B can also be defined recursively as follows:

(a) A single node is a binary tree, so a single node is in B.

(b) If T1 and T2 are binary trees (are in B) then we can create a new binary
tree by taking a new node as the root and attaching T1 and T2 on branches
below it.

(c) If T1 is a binary tree (is in B) then we can create a new binary tree by
taking a new node as the root and attaching T1 on a branch below it.

According to this definition we get new binary trees as follows:

and are trees and therefore so is

and are trees and therefore so is

4

is a tree and therefore so is

(This last one is the first tree listed in the section.)

2.3 Properties of Binary Trees

Binary trees are heavily used in various algorithms and have several properties
which are critical to know.

We’ll just mention them here but we’ll prove some of them via structural in-
duction.

Definition 2.3.1. For a binary tree T define:

N(T) The number of nodes in the tree.
T (E) The number of edges (connections) in the tree.
L(T) The number of leaves in the tree.
H(T) The height of the tree. A single node has height 0.

In addition:

Definition 2.3.2. A binary tree is perfect if all the notes (except the leaves)
have exactly two children and if all the leaves are at exactly the same depth.

Example 2.2. Here is a perfect tree:

Theorem 2.3.1. For a binary tree T we have:

N(T) = E(T) + 1

L(T) ≤ 2H(t) With = iff T is perfect.

N(T) ≤ 2H(t)+1 − 1 With = iff T is perfect.

Proof. See the notes on structural induction. QED

It’s worth noting that as a result of the latter two we have the following:

5

Theorem 2.3.2. For a binary tree T we have:

H(t) ≥ lgL(t) With = iff T is perfect.

H(t) ≥ lg(N(t)− 1)− 1 With = iff T is perfect.

6

	Recursively Defined Sets
	Introduction
	Examples

	Binary Trees
	Introduction
	Recursive Definition
	Properties of Binary Trees

