
CMSC 250: Structural Mathematical Induction

Justin Wyss-Gallifent

April 20, 2023

1 Introduction . 2
2 How it Works . 2
3 Examples . 2

1

1 Introduction

Weak and strong mathematical induction are both predicated on the fact that
we are proving something for all n ≥ n0 for some n0. This means that there is
some organization of the items for n = n0, n = n0 + 1, n = n0 + 2 and so on.

However not all collections of objects are organized like this. Some examples:

• The set of binary trees cannot necessarily be organized this way.

• A recursively defined set cannot necessarily be organized this way.

However both of these things are defined by giving some elements in the set (sort
of like base cases) and then some rule(s) for adding new elements to the sets.
Structural induction is essentially a way of doing induction on these recursively
defined sets.

2 How it Works

Suppose we want to prove some property is true for all items in a recursively
defined set. We proceed as follows:

(a) Base Cases(s): We prove that the property is true for the original items in
the set.

(b) Inductive Step: We prove that when the rules add new things to the set
that the property is preserved.

3 Examples

Here are a bunch of examples.

Example 3.1. Suppose a set S is defined recursively as follows:

(a) 1 ∈ S

(b) If x ∈ S then 2x ∈ S.

Let’s prove that all elements of S are integer powers of 2.

(a) Base Case: Observe that 1 = 20 so 1 is an integer power of 2.

(b) Inductive Step: Suppose x ∈ S and x is an integer power of 2. We claim
that 2x is an integer power of 2 as well. Since x is a power of 2 we know
x = 2k for some k ∈ Z. Then 2x = 2(2k) = 2k+1 and since k + 1 ∈ Z we
know that 2x is also a power of 2.

Take a few minutes to see that the inductive step is showing that the property
is preserved. Whenever the original item in S has the property and we add a
new items to S, that new item will also have the property. It follows that all
items have that property.

2

Example 3.2. Suppose a set S is defined recursively as follows:

(a) (0, 0) ∈ S

(b) If (x, y) ∈ S then (x, y + 1), (x + 1, y + 1), (x + 2, y + 1) ∈ S.

Let’s prove that every element (x, y) ∈ S has x ≤ 2y.

(a) Base Case: Observe that (0, 0) certainly satisfies 0 ≤ 2(0).

(b) Inductive Step: Suppose (x, y) ∈ S and x ≤ 2y. We have three things
to show since there are three rules for adding new elements:

• We need to prove that (x, y + 1) satisfies x ≤ 2(y + 1). However
since x ≤ 2y ≤ 2y + 2 = 2(y + 1) this is true.

• We need to prove that (x + 1, y + 1) satisfies x + 1 ≤ 2(y + 1).
However since x ≤ 2y we have x + 1 ≤ 2y + 1 ≤ 2y + 2 = 2(y + 1)
this is true.

• We need to prove that (x + 2, y + 1) satisfies x + 2 ≤ 2(y + 1).
However since x ≤ 2y we have x + 2 ≤ 2y + 2 = 2(y + 1) this is
true.

Example 3.3. Suppose a set S of strings of a and b is defined recursively
as follows:

(a) The empty string is in S.

(b) If x ∈ S then axb, bxa are in S and if x, y ∈ S then xy ∈ S.

Let’s prove that every string in S has an equal number of a and b.

(a) Base Case: Observe that the empty string has 0 of each, and 0 = 0.

(b) Inductive Step: We have three things to show since there are three rules
for adding new elements:

• We need to prove that if x ∈ S has an equal number of a and b
then axb has an equal number of a and b. But this is clear since
we’re adding one of each.

• We need to prove that if x ∈ S has an equal number of a and b
then bxa has an equal number of a and b. But this is clear since
we’re adding one of each.

• We need to prove that if x, y ∈ S each has an equal number of a
and b then xy has an equal number of a and b. But this is clear
since if x has k of each and y has j of each then xy has j + k of
each.

3

Example 3.4. Suppose a set S is defined recursively as follows:

(a) 0 ∈ S

(b) If x ∈ S then 2x + 1 ∈ S.

Let’s prove that S = {2n − 1 |n ∈ Z≥0}.
To prove this we actually need to prove both ⊆ and ⊇. The first of these is
by structural induction, the second by weak induction.

Let’s first show that S ⊆ {2n − 1 |n ∈ Z≥0}. This means showing that
everything in S has the form 2n − 1 for some n ∈ Z≥0.

(a) Base Case: Observe that 0 = 20 − 1 so it is true.

(b) Inductive Step: Suppose that x ∈ S and x = 2n − 1 for some n ∈ Z≥0.
We claim that 2x−1 also has this form. However observe that: 2x−1 =
2(2n − 1)− 1 = 2n+1 − 1 and since n + 1 ∈ Z≥0 we are done.

Let’s next show that {2n − 1 |n ∈ Z≥0} ⊆ S using weak induction. This
means proving that for all n ≥ 0 we have 2n − 1 ∈ S.

(a) Base Case: We check n = 0. Since 20 − 1 = 0 and we know 0 ∈ S was
given, the base case is true.

(b) Inductive Step: Suppose 2k − 1 ∈ S for k ≥ 0. We claim 2k+1 − 1 ∈ S.
Well observe that since 2k − 1 ∈ S we know that 2(2k − 1) + 1 ∈ S by
the construction of S. However:

2(2k − 1) + 1 = 2k+1 − 2 + 1 = 2k+1 − 1

and so 2k+1 − 1 ∈ S as desired.

4

Example 3.5. Recall how binary trees are defined recursively. Let’s prove
that N(T) = E(T) + 1 for any binary tree T .

(a) Base Case: If T is a single node then N(T) = 1 and E(T) = 0 and
1 = 0 + 1 is true.

(b) Inductive Step: There are two ways to create new binary trees during
the recursive construction and we must examine both of them.

• Suppose T is a binary tree for which N(T) = E(T)+1 and we create
a new binary tree T ′ by creating a new root node and attaching T
to it. We claim that N(T ′) = E(T ′) + 1.

In creating this new binary tree we add one node and one edge and
so N(T ′) = N(T) + 1 and E(T ′) = E(T) + 1 and so then:

N(T ′) = N(T) + 1

= E(T) + 1 + 1

= E′(T) + 1

• Suppose T1 and T2 are binary trees for which N(T1) = E(T1) + 1
and N(T2) = E(T2) + 1 and we create a new binary tree T ′ by
creating a new root node and attaching both T1 and T2 to it. We
claim that N(T ′) = E(T ′) + 1.

In creating this new binary tree we add one node and two edges
and so N(T ′) = N(T1)+N(T2)+1 and E(T ′) = E(T1)+E(T2)+2
and so then:

N(T ′) = N(T1) + N(T2) + 1

= E(T1) + 1 + E(T2) + 1 + 1

= E(T1) + E(T2) + 2 + 1

= E(T ′) + 1

5

Example 3.6. Let’s prove that L(T) ≤ 2H(t) for any binary tree T .

(a) Base Case: If T is a single node then L(T) = 1 and H(T) = 0 and
1 ≤ 20 is true.

(b) Inductive Step: Again there are two things to show:

• Suppose T is a binary tree for which L(T) ≤ 2H(T). and we create
a new binary tree T ′ by creating a new root node and attaching T
to it. We claim that L(T ′) ≤ 2H(T ′).

In creating this new binary tree the number of leaves does not
change and the height increases by 1, so L(T ′) = L(T) and H(T ′) =
H(T) + 1 and so then:

L(T ′) = L(T) ≤ 2H(T) = 2H
′(T)−1 ≤ 2H

′(T)

• Suppose T1 and T2 are binary trees for which L(T1) ≤ 2H(T1) and
L(T2) ≤ 2H(T2) and we create a new binary tree T ′ by creating a
new root node and attaching both T1 and T2 to it. We claim that
L(T ′) ≤ 2H(T ′).

In creating this new binary tree the number of leaves in T ′ is the
sum of the number of leaves in T1 and T2, so:

L(T ′) = L(T1) + L(T2)

The height of T ′ will be 1 plus the maximum of the heights of T1

and T2. However it’s certainly the case that H(T ′) ≥ H(T1) + 1
and H(T ′) ≥ H(T2) + 1. Then we get:

L(T ′) = L(T1) + L(T2) ≤ 2H(T1) + 2H(T2)

≤ 2H(T ′)−1 + 2H(T ′)−1

≤ 2 · 2H(T ′)−1

≤ 2H(T ′)

Note: Another approach to managing the height is to first look at
the case where H(T1) ≥ H(T2). In that case H(T ′) = H(T1) + 1

6

and then:

L(T ′) = L(T1) + L(T2) ≤ 2H(T1) + 2H(T2)

≤ 2H(T1) + 2H(T1)

= 2H(T ′)−1 + 2H(T ′)−1

≤ 2 · 2H(T ′)−1

≤ 2H(T ′)

The case where H(T2) ≥ H(T1) is exactly the same with the trees
exchanged.

7

Example 3.7. Let’s prove that N(T) ≤ 2H(T)+1 − 1 for any binary tree T .

(a) Base Case: If T is a single node then N(T) = 1 and H(T) = 0 and
1 ≤ 20+1 − 1 is true.

(b) Inductive Step: Again there are two things to show:

• Suppose T is a binary tree for which N(T) ≤ 2H(T)+1 − 1. and
we create a new binary tree T ′ by creating a new root node and
attaching T to it. We claim that N(T ′) ≤ 2H(T ′)+1−1. It’s actually
easier to show that 2H(T ′)+1 − 1 ≥ N(T ′).

In creating this new binary tree we add one node and the height
increases by 1, so N(T ′) = N(T) + 1 and H(T ′) = H(T) + 1 and
so then:

2H(T ′)+1 − 1 = 2H(T)+1+1 − 1

= 2 · 2H(T)+1 − 1

≥ 2(N(T) + 1)− 1

= 2N(T) + 1

≥ N(T) + 1

= N(T ′)

• Suppose T1 and T2 are binary trees for which N(T1) ≤ 2H(T1)+1−1
and N(T2) ≤ 2H(T2)+1 − 1 and we create a new binary tree T ′ by
creating a new root node and attaching both T1 and T2 to it. We
claim that N(T ′) ≤ 2H(T ′)+1 − 1.

In creating this new binary tree the number of nodes in T is the
sum of the number of nodes in T1 and T2 plus 1 more so:

N(T ′) = N(T1) + N(T2) + 1

The height is tricky. The height of T ′ will be 1 plus the maximum
of the heights of T1 and T2. However it’s certainly the case that
H(T ′) ≥ H(T1) + 1 and H(T ′) ≥ H(T2) + 1. Then we get:

N(T ′) = N(T1) + N(T2) + 1 ≤ 2H(T1)+1 − 1 + 2H(T2)+1 − 1 + 1

≤ 2H(T1)+1 + 2H(T2)+1 − 1

≤ 2H(T ′) + 2H(T ′) − 1

≤ 2H(T ′)+1 − 1

8

	Introduction
	How it Works
	Examples

