CMSC 351: CountingSort

Justin Wyss-Gallifent

March 23, 2021

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 What it Does</td>
<td>2</td>
</tr>
<tr>
<td>2 How it Works</td>
<td>2</td>
</tr>
<tr>
<td>3 Pseudocode and Time Complexity</td>
<td>3</td>
</tr>
<tr>
<td>4 Auxiliary Space</td>
<td>4</td>
</tr>
<tr>
<td>5 Stability</td>
<td>4</td>
</tr>
<tr>
<td>6 In-Place</td>
<td>4</td>
</tr>
<tr>
<td>7 Usage Note</td>
<td>4</td>
</tr>
<tr>
<td>8 Thoughts, Problems, Ideas</td>
<td>5</td>
</tr>
<tr>
<td>9 Python Test</td>
<td>6</td>
</tr>
</tbody>
</table>
1 What it Does

Sorts a list of (preferably small) nonnegative integers for which we know the maximum. This can be tweaked to do a bit more.

2 How it Works

Counting sort works by counting the number of each integer and creating a new list with that information.

For example consider this list:

A = [3, 10, 4, 3, 4, 5, 4, 3, 5, 6, 1, 3, 0]

Knowing that the maximum value is 10 we create an array LOC with indices from 0 to 10 such that LOC[k] contains the count of k in A. The name LOC we’re using may seem a bit weird but it will make sense soon.

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

of 0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s

What follows is a standard way of putting the elements back into an array properly sorted. First we modify LOC above by replace it with its cumulative version, meaning we successively add each entry to the next.

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOC</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

For a moment observe that this needs to give us the sorted version of A:

<table>
<thead>
<tr>
<th>index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Observe that each value in LOC gives the ending location (hence the name LOCation) of the associated index in the sorted array. For example LOC[3]==6 which means that the 3s end at location 6, meaning index 5, so that the 3s are located at indices 5, 4, and 3.

So think of LOC as a location recorder in which LOC[j] tells us where to put j. Then we construct a new list ANEW by going through A, taking each element, finding the index to place it using LOC, then decreasing that entry in LOC in preparation in case there’s another value to come. In other words:

A[0]==3 (the value) and LOC[3]==6 (the location to put it) so assign ANEW[6-1]==3 and set LOC[3]=5.

And so on until we have filled up ANEW. Typically we then copy ANEW back to A.
3 Pseudocode and Time Complexity

Here is the pseudocode with time assignments. Everything is just assignment, notice not a single comparison in sight!

\[
\text{\textbackslash PRE: } A \text{ is a list of length } n \text{ with maximum value } k. \\
\text{LOC = array of zeros of length } k+1 \\
\text{ANEW = array of zeros of length } n \\
\text{for } i = 0 \text{ to } n-1 \\
\quad \text{LOC}[A[i]] = \text{LOC}[A[i]] + 1 \quad c_1 \\
\text{end} \\
\text{for } i = 1 \text{ to } k \\
\quad \text{LOC}[i] = \text{LOC}[i] + \text{LOC}[i-1] \quad c_1 \\
\text{end} \\
\text{for } i = 0 \text{ to } n-1 \\
\quad \text{ANEW}[\text{LOC}[A[i]]-1] = A[i] \quad c_1 \\
\quad \text{LOC}[A[i]] = \text{LOC}[A[i]] - 1 \quad c_1 \\
\text{end} \\
\text{for } i = 0 \text{ to } n-1 \\
\quad A[i] = \text{ANEW}[i] \quad c_1 \\
\text{end} \\
\text{\textbackslash POST: } A \text{ is sorted.}
\]

\textbf{Note 3.0.1.} If \(A \) is given but \(k \) is not we can simply add a simple loop to calculate it first since it’s the maximum of the list. This process is \(\Theta(n) \).

\textbf{Best-, Worst-, and Average-Cases:}
There are no comparisons made. Three of the loops depend on \(n \) but the fourth depends on \(k \) so we must factor that in. This is our first time calculation that depends upon more than just the size of the list. The total time required is:

\[
T(n, k) = 2c_1 + c_1 n + c_1 k + 2c_1 n + c_1 n = \Theta(n + k)
\]

This is the same for best-case, worst-case, and average-case.
If this is confusing, think of \(n + k \) as a single variable, so what this means is that there are \(B, C > 0 \) and some index \(m_0 \) such that:

\[
\text{If } n + k \geq m_0 \text{ then } B(n + k) \leq T(n, k) \leq C(n + k)
\]

\textbf{Note 3.0.2.} If \(k \) is a fixed constant and we let \(n \) vary then the time complexity is \(\Theta(n) \).

\textbf{Note 3.0.3.} If \(k \) is not fixed but we can guarantee that \(k \leq n \) then the time complexity is \(\Theta(n) \).
4 Auxiliary Space

CountingSort uses $\Theta(n+k)$ auxiliary space since it is required to create the LOC list as well as the ANEW list.

5 Stability

Our particular pseudocode implementation of CountingSort is unstable. A small tweak makes it stable.

6 In-Place

CountingSort is not in-place.

7 Usage Note

CountingSort can be modified to manage other types of data. See the exercises for examples. It is often used as an auxiliary method inside other methods like RadixSort.
8 Thoughts, Problems, Ideas

1. Suppose $k_1, k_2 \in \mathbb{Z}$ with $k_1 < k_2$. Suppose every x in your list is an integer satisfying $k_1 \leq x \leq k_2$. Modify CountingSort so that it can manage this list. What would the Θ time complexity be?

2. Suppose $k_1, k_2 \in \mathbb{R}$ with $k_1 < k_2$ and both having at most one digit after the decimal point. Suppose every x in your list is a real number satisfying $k_1 \leq x \leq k_2$ with x having at most one digit after the decimal point. Modify CountingSort so that it can manage this list. What would the Θ time complexity be?

3. Suppose $d \in \mathbb{Z}$ with $d \geq 0$, $k_1, k_2 \in \mathbb{R}$ with $k_1 < k_2$ and both having at most d digits after the decimal point. Suppose every x in your list is a real number satisfying $k_1 \leq x \leq k_2$ with x having at most d digits after the decimal point. Modify CountingSort so that it can manage this list. What would the Θ time complexity be?

4. Using the list $[2, 2', 2'', 1]$ demonstrate why our implementation of CountingSort is unstable. Understanding the flow of the algorithm with this example should indicate to you how CountingSort can be very simply modified to make it stable. What would this modification be?
9 Python Test

Code:

```python
import random
A = []
k = 5
n = 10
for i in range(0,n):
    A.append(random.randint(0,k))
print(A)
ANEW = [0] * n
LOC = [0] * (k+1)
for i in range(0,n):
    LOC[A[i]] = LOC[A[i]] + 1
print('Count array: '+str(LOC))
for i in range(1,k+1):
    LOC[i] = LOC[i] + LOC[i-1]
print('Cumulative count array: '+str(LOC))
for i in range(n-1,-1,-1):
    LOC[A[i]] = LOC[A[i]] - 1
    print('Positioning A['+str(i)+'] in position '+str(LOC[A[i]]-1))
print('Result: '+str(ANEW))
for i in range(0,n):
    A[i] = ANEW[i]
print(A)
```
Output:

```
[3, 2, 0, 5, 2, 5, 0, 1, 2, 1]
Count array: [2, 2, 3, 1, 0, 2]
Cumulative count array: [2, 4, 7, 8, 8, 10]
Result: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
Result: [0, 0, 0, 1, 0, 0, 2, 0, 0, 0]
Positioning A[7] in position 1
Result: [0, 0, 1, 1, 0, 0, 2, 0, 0, 0]
Result: [0, 0, 1, 1, 0, 0, 2, 0, 0, 0]
Result: [0, 0, 1, 1, 0, 0, 2, 0, 0, 5]
Result: [0, 0, 1, 1, 0, 0, 2, 0, 0, 5]
Result: [0, 0, 1, 1, 0, 2, 0, 0, 5, 5]
Result: [0, 0, 1, 1, 0, 2, 0, 5, 5]
Result: [0, 0, 1, 1, 2, 2, 0, 5, 5]
Positioning A[0] in position 6
Result: [0, 0, 1, 1, 2, 2, 3, 5, 5]
```