CMSC 351: Depth-First Traverse (Stack Version)

Justin Wyss-Gallifent

December 12, 2022
1 Introduction:
Suppose we are given a graph G and a starting node s. Suppose we wish to simply traverse the graph in some way looking for a particular value associated with a node. We're not interested in minimizing distance or cost or any such thing, we're just interested in the traverse process.

2 Intuition
One classic way to go about this is a depth-first traverse. The idea is that starting with a starting node s we follow one branch (typically recursively) as far as possible before backtracking. When we backtrack we only do so as little as possible until we can go deeper again.

3 Algorithm
The algorithm for depth-first traverse starting at a vertex s proceeds as follows:
We first set up:
- A stack with just s on it, so $S = [s]$.
- A boolean list D of length V called the visited array which indicates whether a vertex has been visited or not and fill it full of F, or 0.

We then repeat the following steps until the stack is empty:
1. $x = S.pop$. If x has been visited, ignore it.
2. $D[x] = T$
3. Find all vertices adjacent to x which have not been visited. For each, push it on the stack.

By convention and consistency when we “find all vertices” we’ll do it in increasing numerical order.

4 Working Through an Example
Example 4.1. Consider the following graph
Suppose we wish to traverse the graph starting at the node $s = 0$.

Iterate! We pop $x = 0$. It is unvisited. We mark it as visited and note that it is adjacent to unvisited 1, 4, 5. We push them onto the stack.

$S = [1, 4, 5]$

Iterate! We pop $x = 5$. It is unvisited. We mark it as visited and note that it is adjacent to unvisited 8, 9. We push them onto the stack.

$S = [1, 4, 8, 9]$

Iterate! We pop $x = 9$. It is unvisited. We mark it as visited and note that it is adjacent to unvisited 10. We push that onto the stack.

$S = [1, 4, 8, 10]$

Iterate! We pop $x = 10$. It is unvisited. We mark it as visited and note that it is adjacent to unvisited 14. We push that onto the stack.

$S = [1, 4, 8, 14]$

Iterate! We pop $x = 14$. It is unvisited. We mark it as visited and note that it is not adjacent to any unvisited vertices.

$S = [1, 4, 8]$

Iterate! We pop $x = 8$. It is unvisited. We mark it as visited and note that it is adjacent to unvisited 4, 13. We push them onto the stack.

$S = [1, 4, 4, 13]$

Iterate! We pop $x = 13$. It is unvisited. We mark it as visited and note that it is adjacent to unvisited 12. We push that onto the stack.

$S = [1, 4, 4, 12]$

Iterate! We pop $x = 12$. It is unvisited. We mark it as visited and note that it is not adjacent to any unvisited vertices.
\(S = [1, 4] \)

Iterate! We pop \(x = 4 \). It is unvisited. We mark it as visited and note that it is not adjacent to any unvisited vertices.
\(S = [1] \)

Iterate! We pop \(x = 4 \). It has been visited so we ignore it.
\(S = [1] \)

Iterate! We pop \(x = 1 \). It is unvisited. We mark it as visited and note that it is adjacent to unvisited 2, 6. We push them onto the stack.
\(S = [2, 6] \)

Iterate! We pop \(x = 6 \). It is unvisited. We mark it as visited and note that it is adjacent to unvisited 2, 11. We push them onto the stack.
\(S = [2, 2, 11] \)

Iterate! We pop \(x = 11 \). It is unvisited. We mark it as visited and note that it is adjacent to unvisited 15. We push that onto the stack.
\(S = [2, 2, 15] \)

Iterate! We pop \(x = 15 \). It is unvisited. We mark it as visited and note that it is not adjacent to any unvisited vertices.
\(S = [2, 2] \)

Iterate! We pop \(x = 2 \). It is unvisited. We mark it as visited and note that it is adjacent to unvisited 3, 7. We push them onto the stack.
\(S = [2, 3, 7] \)

Iterate! We pop \(x = 7 \). It is unvisited. We mark it as visited and note that it is not adjacent to any unvisited vertices.
\(S = [2, 3] \)
\(D = [T, T, F, F, T, T, T, T, T, T, T, T, T, T] \)

Iterate! We pop \(x = 3 \). It is unvisited. We mark it as visited and note that it is not adjacent to any unvisited vertices.
\(S = [2] \)
\(D = [T, T, T] \)

Iterate! We pop \(x = 2 \). It has been visited so we ignore it.
\(S = [3, 7] \)

Now we are done because the stack is empty.
The order in which we traverse is the order in which the nodes were popped and marked as visited:

0, 5, 9, 10, 14, 8, 13, 12, 4, 1, 6, 11, 15, 2, 7, 3
5 Pseudocode

Here is the pseudocode for the above implementation.

```plaintext
function dftstack(G,x):
    D = list of FALSE of length V
    S = [x]
    while S is nonempty
        x = S.pop
        if D[x] == FALSE
            D[x] = TRUE
            for all y adjacent to x
                if D[y] == FALSE:
                    S.push(y)
            end if
        end if
    end while
end function
```

Note 5.0.1. Depth-first traversing is more useful when we suspect that the target is far from the starting node.

Note 5.0.2. Depth-first traversing is more useful for puzzle-like problems which involve making a decision and carrying it through to completion (this is a recursive process).
6 Pseudocode Time Complexity

Needs finishing, sorry!

7 Modifying to Search

Depth-first traverse can be tweaked if there is a target node in mind. How would you tweak the pseudocode to exit as soon as the target was found and how would that change the time complexity?