CMSC 351: Integer Addition

Justin Wyss-Gallifent

April 4, 2021

1 Introduction ... 2
2 Schoolbook Addition ... 2
3 Pseudocode ... 2
4 Pseudocode Time Complexity ... 2
5 Improvements ... 3
6 Thoughts, Problems, Ideas .. 4
7 Python Test and Output ... 5
1 Introduction

Suppose we have two \(n \)-digit numbers and wish to add them. What is the worst-case time complexity of this operation?

2 Schoolbook Addition

The first and most obvious way to add two numbers is the way we learn in school. We add digit-by-digit and carry if necessary:

\[
\begin{array}{cccccc}
1 & 1 & 1 & 3 & 6 & 7 & 2 & 8 \\
6 & 5 & 9 & 1 & 6 \\
\hline
1 & 0 & 2 & 6 & 4 & 4
\end{array}
\]

3 Pseudocode

If we store each number digit-by-digit in arrays \(A \) and \(B \) then the pseudocode for adding them and putting the result in \(c \) is as follows. To make things a little simpler we are storing the 1’s digit in \(A[0] \), the 10’s digit in \(A[1] \) and so on, so we print the lists backwards.

\[
\begin{align*}
&\text{\texttt{PRE: A and B are lists of length n containing}} \\
&\text{\texttt{ the digits of two numbers.}} \\
&\text{\texttt{PRE: C is an empty list of length n+1.}} \\
&\text{\texttt{C = list of 0s of length n+1}} \\
&\text{\texttt{carry = 0}} \\
&\text{\texttt{for i in range(0,n):}} \\
&\text{\quad \texttt{C[i] = A[i] + B[i] + carry}} \\
&\text{\quad \texttt{if C[i] > 9}} \\
&\text{\quad \quad \texttt{carry = the 10s digit of C[i]}} \\
&\text{\quad \quad \texttt{C[i] = the 1s digit of C[i]}} \\
&\text{\quad \texttt{else}} \\
&\text{\quad \quad \texttt{carry = 0}} \\
&\text{\quad \texttt{end}} \\
&\text{\texttt{C[n] = carry}} \\
&\text{\texttt{\textbackslash{}texttt{POST: C contains the digit-by-digit result of adding A and B.}}}
\end{align*}
\]

4 Pseudocode Time Complexity

What is the time complexity of this algorithm? Well it does constant-time operations before the loop, \(n \) constant-time operations for the loop, and constant-time operations after the loop, so worst-case, best-case, and average-case are all \(\Theta(n) \).
Could we do any better?
For numbers $a_n...a_1$ and $b_n...b_1$ we wish to find $c_{n+1}c_n...c_1$ (we go to c_{n+1} because there may be an additional digit). To find c_1 we absolutely have to calculate $a_1 + b_1$ since there is no other way to find that digit since we certainly can’t figure it out from the remaining a_i and b_i.

Likewise to calculate c_2 we’ll potentially need a carry digit from $a_1 + b_1$ but again we absolutely have to calculate $a_2 + b_2$. This pattern continues and in general we have no choice but to do the individual digit additions. Thus there are n required operations for a time complexity of $\Theta(n)$.
6 Thoughts, Problems, Ideas

1. Assume A and B are binary strings of length n and rewrite the pseudocode, removing addition and comparison and instead using logical operators and (only once) and xor (only once).

2. The addition pseudocode can be rewritten to eliminate carry and instead store the carry pre-emptively in C. Do so.

3. Two’s Complement: For a given binary number B the Two’s Complement of the number is obtained by negating all the bits and adding 1. For example the two’s complement of $B=01101$ is $\overline{B}+1=10010+1=10011$. For a number B with N bits if we add B and its two’s complement we always get 2^N, for example $B+\overline{B}+1=01101+10011+1=100000$. Consequently for $A\geq B$ we have $A+\overline{B}+1=A+(2^N)-B=2^N+(A-B)$ and so we can calculate $A-B$ by instead calculating $A+\overline{B}+1$ and ignoring the resulting leftmost digit. For example:

$$1011101-0110111 = 1011101+\overline{0110111}+1$$
$$= 1011101+1001000+1$$
$$= 10100110$$

Write the pseudocode for this. Just for extra fun and excitement:

- Do not use a carry bit.
- Do not use any conditionals.
- Use only one loop.

You can just assume the additional resulting bit will be ignored.
7 Python Test and Output

Code:

```python
import random
A = []
B = []
for i in range(0,7):
    A.append(random.randint(0,9))
    B.append(random.randint(0,9))
n = len(A)
print(' ' + str(A[::-1]))
print(' ' + str(B[::-1]))
C = [0] * (n+1)
carry = 0
for i in range(0,n):
    if carry == 0:
        print(str(A[i])+'+'+str(B[i])+'= '+str(C[i]))
    else:
        print(str(A[i])+'+'+str(B[i])+'+'+str(carry)+'= '+str(C[i]))
    if C[i] > 9:
        carry = C[i] // 10
        C[i] = C[i] % 10
        print('Carry the '+str(carry))
    else:
        carry = 0
C[n] = carry
print(C[::-1])
```

Output:

```
[7, 2, 8, 9, 9, 6, 2]
[2, 6, 8, 3, 4, 3, 0]
2+0=2
6+3=9
9+4=13
Carry the 1
9+3+1=13
Carry the 1
8+8+1=17
Carry the 1
2+6+1=9
7+2=9
[0, 9, 9, 7, 3, 3, 9, 2]
```