<table>
<thead>
<tr>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial Time</td>
<td>2</td>
</tr>
<tr>
<td>P</td>
<td>3</td>
</tr>
<tr>
<td>NP</td>
<td>5</td>
</tr>
<tr>
<td>P v NP</td>
<td>6</td>
</tr>
<tr>
<td>Problem Reduction and Equivalence</td>
<td>7</td>
</tr>
<tr>
<td>NP-Complete Problems</td>
<td>9</td>
</tr>
<tr>
<td>NP-Hard Problems</td>
<td>9</td>
</tr>
<tr>
<td>Thoughts, Problems, Ideas</td>
<td>10</td>
</tr>
</tbody>
</table>
1 Polynomial Time

A reminder:

Definition 1.0.1. An algorithm runs in *polynomial time* if $T(n) = \mathcal{O}(n^k)$ for some $k \in \mathbb{N}$ where n is the input size.

Example 1.1. MergeSort has $T(n) = \Theta(n \lg n) = \mathcal{O}(n^2)$ and hence MergeSort is polynomial time.

Example 1.2. Generating a list of all permutations of $\{1, 2, ..., n\}$ has $T(n) = \Theta(n!)$ which is not polynomial time. Why not? Can you prove this?

Generally speaking we think of polynomial time as “fast” but depending on the coefficients, in reality polynomial time can be incredibly slow.
Definition 2.0.1. The set P is the set of all decision problems such that a deterministic Turing machine can take any input and produce YES/NO in polynomial time.

Example 2.1. YES/NO: Given x, y and d, is $d = \gcd(x, y)$?

Observe that this is a YES/NO question which can be solved by actually finding $\gcd(x, y)$. This calculation can be done in polynomial time by the Euclidean Algorithm on a DTM. Thus we can solve the problem by simply finding the \gcd and comparing it to d.

Thus this decision problem is (in) P.

Example 2.2. YES/NO: Given two lists of integers A and B with the same length, do they contain the same values?

One way to solve this would be to sort both lists and then compare them value-by-value. All of these processes can be done in polynomial time on a DTM.

Thus this decision problem is P.

Example 2.3. YES/NO: Given a graph G on n vertices, two specific vertices s and t, and a distance d, is there a path of length less than or equal to d from s to t?

We can run Dijkstra’s algorithm on G starting at s to construct a shortest path tree from s, then we can check if the distance to t is less than or equal to k. All of these processes are $O(n^2)$.

Thus this decision problem is P.

Example 2.4. YES/NO: Given a partially filled $n^2 \times n^2$ Sudoku board, is there a solution?

It is unknown if this can be solved in polynomial time on a DTM.

Thus it is unknown if this decision problem is P. It is suspected that the answer is no.

Example 2.5. YES/NO: Given a set of n integers, is there a subset which adds to 0?

It is unknown if this can be solved in polynomial time on a DTM.

Thus it is unknown if this decision problem is P. It is suspected that the answer is no.

Example 2.6. YES/NO: Given a graph G, does G contain a Hamiltonian cycle?

This is a cycle which contains each vertex exactly once.

It is unknown if this can be solved in polynomial time on a DTM.

Thus it is unknown if this decision problem is P. It is suspected that the answer is no.
In many cases if the decision version of an optimization problem is \(P \) then the optimization problem itself can be solved in polynomial time.

Example 2.7. Let \(G \) be a weighted graph and \(s, t \) be connected vertices. Consider the optimization problem of finding the length of the shortest path from \(s \) to \(t \).

The decision version of this is to determine if there exists a path of length less than or equal to a given \(k \) from \(s \) to \(t \).

Suppose we have a polynomial-time algorithm \(\text{pathexists}(G,s,t,k) \) which answers the decision version in polynomial time. In other words within polynomial time it returns YES\(\lor \)NO if a path of length less than or equal to \(k \) from vertex \(s \) to vertex \(t \).

Since the graph is connected we know there is a path from \(s \) to \(t \) and the length of this path could at most be the total sum of all the edge weights. So what we can do is:

```plaintext
function findshortestpathlength(G,s,t,k)
    max = sum of edge weights in G
    shortest = max
    for i = max down to 0
        if pathexists(G,s,t,i) then
            shortest = i
        end
    end
    return(shortest)
end
```

This function will return the length of the shortest path and will do so in polynomial time on a DTM.

Thus this optimization process can be solved in polynomial time. ■
3 NP

Before talking about NP, here is P again so we can compare:

Definition 3.0.1. The set P is the set of all decision problems such that at DTM can take an input and produce YES\text{\lor}NO in polynomial time.

And now NP:

Definition 3.0.2. The set NP is the set of all decision problems such that a NTM can take an input and produce YES\text{\lor}NO in polynomial time.

Now then, let’s stop to point out that this was the original definition of NP but there’s an equivalent and more modern definition of NP which is based upon verification of solutions.

Definition 3.0.3. The set NP is the set of all decision problems having the property that if we are given a potential witness, then within polynomial time on a DTM, if the answer is YES we can say so (essentially we’re saying “YES, because a witness exists!”) and if the answer is NO all we can say is “This is not a witness!”.

In this case we say we have a polynomial time verifier. Note that technically we are not verifying the witness but rather verifying that there is a witness.

Note that now we can refrain from mentioning a DTM.

Example 3.1. YES\text{\lor}NO: Given a set S of integers can we partition S into two subsets whose sums are equal?

Suppose you give me $S = \{1, 3, 5, 7\}$.

- If I provide you with the two sets $\{3, 5\}$ and $\{1, 7\}$. You can immediately say that the answer is YES.
- If I provide you with the two sets $\{1, 3\}$ and $\{5, 7\}$. You can say nothing.

We see that this decision problem is NP.

Some other problems which can be seen to be NP in a similar way:

Example 3.2. YES\text{\lor}NO: Does a given partially filled Suduko board have a solution?

Example 3.3. YES\text{\lor}NO: Given a set of n integers, is there a subset which adds to 0?

Example 3.4. YES\text{\lor}NO: Given a graph G does it contain a cycle?

Note 3.0.1. I read somewhere once that some people believe that we should just use VP to mean verifiable in polynomial time on a DTM instead of using NP. That way the machine is always a DTM.

Or even better, SP (for solvable in polynomial time) and VP (verifiable in polynomial time). But there we go.
4 P v NP

Note 4.0.1. First, observe that \(P \subseteq NP \). Suppose we can solve a decision problem in polynomial time. Given a potential witness we totally ignore it, solve the problem and if the answer is YES we say so. Note that again, we’re not technically verifying the witness but rather verifying that a witness exists. Since the answer is YES this is true no matter which witness was provided.

Definition 4.0.1. The \(P \text{ v } NP \) Problem asks whether \(P = NP \) or not. In other words is it the case that when we can verify any potential witness in polynomial time that we can also solve the decision problem in polynomial time?

This is perhaps the greatest unsolved problem in computer science. There is overwhelming evidence that \(P \neq NP \) in the sense that there are many important problems for which potential witnesses can be verified in polynomial time but no polynomial-time solution has been found. However note that this does not mean that such solutions don’t exist.
5 Problem Reduction and Equivalence

Consider the following situations. Suppose you had two problems that you were working on, problems A and B.

- Suppose you manage to prove that $B \in P$. Then, later on, you prove that A is easier than B. You could rightfully suspect that $A \in P$ too.

- Suppose you manage to prove that $A \not\in P$. Then, later on, you prove that A is easier than B. You could rightfully suspect that $B \not\in P$ too.

The notion of “easier” and “harder” can be a bit vague. Instead, let’s define:

Definition 5.0.1. We say that A is polynomially reducible to B if we may, given a polynomial time algorithm for B use it to solve A in polynomial time. We’ll write $A \leq_P B$.

Example 5.1. Suppose a function $B(n)$ decides something in polynomial time and returns YES or NO. Consider some function $g(n)$ which does something else. Suppose we manage to write the following algorithm for $A(n)$:

```plaintext
function A(n)
    for i = 1 to n
        if B(i)
            return(YES)
        end
    end
    return(NO)
end
```

Observe that $A(n)$ is reducible to $B(n)$ in polynomial time. We could thus write $A(n) \leq_P B(n)$.

Note that there might be other algorithms that do whatever $A(n)$ does and they may do it faster, but we don’t know. What we do know, however, is that this algorithm for $A(n)$ reduces the problem to $B(n)$ in polynomial time so it’s essentially “easier than” $B(n)$. ■

Now we can formalize the situations above and say for sure:

- If $A \leq_P B$ and $B \in P$ then $A \in P$.
- If $A \leq_P B$ and $A \not\in P$ then $B \not\in P$.

Example 5.2. Consider these two decision problems:

A: Given an undirected graph, is there a Hamiltonian cycle in the graph?
B: Given a directed graph, is there a Hamiltonian cycle in the graph?

Note: The adjacency matrix for a directed graph has a 1 in the ij position iff there is a directed edge from vertex i to vertex j.

We claim $A \leq_p B$.

To see this, suppose we have an algorithm `exists_directed(G)` which returns `TRUE` if there is a Hamiltonian cycle in a directed graph G and `FALSE` if there isn’t.

Given a undirected graph G the adjacency matrix for G also represents the adjacency matrix for G' where G' is obtained from G by replacing each (undirected) edge with two edges, one in each direction. This takes no time. We can then apply `exists_directed(G)` to find a Hamiltonian cycle in G' which is also a Hamiltonian Cycle in G.

It follows that $A \leq_p B$.

Now then, it is widely believed that $A \notin P$ and so if this is true, then $B \notin P$ also.
6 NP-Complete Problems

Definition 6.0.1. We say that a decision problem $B \in NP$ is NP-complete if $A \leq_p B$ for all $A \in NP$.

In other words if we can solve B in polynomial time then we can solve any other NP algorithm A in polynomial time.

What this means is that if we could solve one single NP-complete problem in polynomial time you could solve every other NP-problem in polynomial time. In this way NP-complete problems are representative of all NP-problems.

Interestingly we can use some stuff from earlier to find a nifty way to show that a decision problem is NP-complete.

Theorem 6.0.1. To show B is NP-complete we show it is in NP and that $A \leq_p B$ for some other NP complete A.

Proof. Suppose $C \in NP$. Since A is NP-complete we know that $C \leq_p A$. Then since $A \leq_p B$ we know that $C \leq_p B$. Thus B is NP-complete. QED

Of course this simply punts the problem to another problem.

Here are a few NP-complete problems:

1. Does a graph have a Hamiltonian path?
2. Given a set of integers and a target, is there a subset of the set that sums to the target?
3. Is a graph planar?

7 NP-Hard Problems

Definition 7.0.1. A problem B is NP-hard if $A \leq_p B$ for every $A \in NP$.

Observe that NP-hard problems don’t need to be NP-themselves, they just have to be “harder than” all NP-problems. Of course NP-complete problems are also NP-hard but there are certainly NP-hard problems which are not NP and therefore not NP-complete.

Observe that showing that a problem B is NP-hard is equivalent to showing that $A \leq_p B$ for some NP-complete problem A. This is because showing this proves that every NP problem reduces to A and thus to B.

At this point we can mention that the typical approach to proving that a problem is NP-complete is then to:

- Prove that it is NP.
- Prove that it is NP-hard, meaning proving that some other NP-complete problem reduces to it.
8 Thoughts, Problems, Ideas

1. Explain how you know that the following decision problems are in P. You don’t need to provide pseudocode, a basic explanation will suffice.

(a) Y\lor N: Given a list with n elements, is it unsorted?
(b) Y\lor N: Given the adjacency matrix for a graph with n vertices, is there one vertex which is connected to all the others?
(c) Y\lor N: Given base-10 list representations of two n digit numbers A and B, is $AB \geq 5 \cdot 10^{2n-2}$?

 For example is $84 \cdot 23 \geq 58 \cdot 10^2 = 500$?
(d) Y\lor N: Given a list with n elements, is the maximum to the left of the minimum?

2. For each of the following you are given a problem $PROB$ and an associated decision problem DEC. For each, write pseudocode to show that if $DEC \in P$ then $PROB$ can be solved in polynomial time.

 Note: Don’t worry about whether or not it’s true in the real world that $DEC \in P$, just assume it is and base your pseudocode on it.

(a) Given a simple connected unweighted graph with n vertices.

 $PROB$: Find length of the longest path.
 DEC: For any given k, is there a path of length k?
(b) Given a list A of n integers, a subset $S \subset A$, and a target t.

 $PROB$: Assuming there is a subset of A containing S which sums to t, find it.
 DEC: Is there a subset of A containing S which sums to t?
(c) Given an integer $n \geq 2$.

 $PROB$: Find the smallest prime factor of n.
 $PROB$: For any given k, is k prime?

3. Explain why reverse-sorting a list is polynomially reducible to sorting a list.

4. Suppose a garage contains n motorcycles each of which has 1, 2 or 4 cylinders. Explain why fixing all cylinders on all motorcycles is polynomially reducible to fixing one cylinder.

5. Suppose G is a simple graph with n vertices. Explain why counting the edges in the graph is polynomially reducible to calculating the degree of a vertex.