
CMSC 420: Amortized Analysis

Justin Wyss-Gallifent

January 31, 2024

1 Introduction . 2
2 Typically Worst-Case . 2
3 Aggregate Method . 3

3.1 Introduction . 3
3.2 Elementary Abstract Example 3
3.3 Allocation for a Stack . 3

4 Token Method . 6
4.1 Introduction . 6
4.2 Elementary Abstract Example 7
4.3 Allocation for a Stack . 8

5 Futher Examples . 10

1

1 Introduction

Imagine a situation in which a we perform n operations. Each time there is
some cost involved and that cost can vary. We may ask what the average cost
per operation is. Here the cost could be any resource such as time or memory.

Definition 1.0.1. The term amortized analysis refers to analysis of a data
structure in which the the costs associated with the most costly operations are
averaged out over time.

Definition 1.0.2. The term amortized cost is used to refer to the average per-
operation cost which arises in this situation.

2 Typically Worst-Case

Generally we will be analyzing situations in which the operations can vary. For
example if we have the dictionary operations on a data structure - search (S),
insert (I), and delete (D), then n operations can arise a number of ways such
as:

IIIIII....︸ ︷︷ ︸
n operations

or

IDIDID....︸ ︷︷ ︸
n operations

or

IIISIIIS....︸ ︷︷ ︸
n operations

Typically when we do amortized analysis we will be looking for the worst-case
scenario. So in the above situation we might ask which sequence of n operations
(each S, I, or D) will lead to the highest cost and hence the highest amortized
cost.

There are several different approaches to amortized analysis, we will discuss
two.

2

3 Aggregate Method

3.1 Introduction

The aggregate method of amortized analysis involves explicitly calculating the
total worst-case cost of n operations and then simply dividing by n.

3.2 Elementary Abstract Example

Here is a simple warm-up example.

Example 3.1. Suppose we perform n operations. Each costs 2 (call this
the base cost) and every fifth operation costs an additional 10 (call this the
surplus cost). What can we say about the average per-cost operation?

The base cost will of course total 2n but the surplus cost is a tiny bit trickier.
After n iterations we will have encountered bn/5c surplus cost events and so
we will have a total of 10 bn/5c surplus cost.

Thus the overall cost is C(n) = 2n + 10 bn/5c and the average cost would
be:

AC(n) =
2n+ 10 bn/5c

n
≤ 2n+ 10(n/5)

n
= 4

Thus the amortized cost satisfies AC(n) = O(1).

3.3 Allocation for a Stack

Consider the problem of space allocation for a stack stored as a list. Imagine the
list is a certain size, and is not necessarily full. When we pop elements off the
stack we remove them from the list but the list remains the same length. When
we push elements onto the stack, provided the list has space, we simply put
them in the correct place in the list. However it’s possible (likely, eventually!)
that at some point we overflow the list and need to reallocate space and copy
over the elements before the guilty push.

Pop is easy:

5 0 3 7 =⇒
Pop 7

5 0 3

Push is usually easy:

5 0 3 7 =⇒
Push 6

5 0 3 7 6

But maybe not:

5 0 3 7 6 2 1 =⇒
Push 6

5 0 3 7 6 2 1 6

Suppose that:

• It costs 1 to pop an element off the stack.

3

• It costs 1 to push an element on the stack provided list reallocation is not
necessary.

• If reallocation is necessary it costs k to reallocate a (new) list of length k
including copying over the elements (but not including the guilty push).

Note 3.3.1. These are hypothetical criteria we are introducing for our examples
and do not necessarily represent what happens in reality and may be tweaked
for other problems!

In the worst-case we keep pushing and allocating with no popping at all. The
reason this is the worst-case is that we are attempting to reallocate as often as
we can to increase the cost, therefore avoiding pops. Thus the worst-case is the
successive pushing of n elements.

Example 3.2. Suppose that when we need to reallocate we simply add 1
to the length of the list.

We start with a list of length 0. We want to push but we need to reallocate,
so we reallocate to length 1, which costs 1, and we push, which costs 1, for
a total cost of 1 + 1. Now we want to push again but we need to reallocate
again, so we reallocate to length 2 (which also copies), which costs 2, and we
push, which costs 1, for a total cost of 2+1. Now we want to push again but
we need to reallocate again, so we reallocate to length 3 (which also copies),
which costs 3, and we push, which costs 1, for a total cost of 3 + 1. And so
on.

The total cost of pushing n elements will be:

(1+1)+(2+1)+(3+1)+...+(n+1) =

n+1∑
i=2

i =
(n+ 1)(n+ 2)

2
−1 =

1

2
n2+

3

2
n

Thus the total cost of doing n pushes will satisfy:

C(n) =
1

2
n2 +

3

2
n

The amortized cost then satisfies:

AC(n) =
1
2n

2 + 3
2n

n
=

1

2
n+

3

2

Observe that AC(n) = O(n), which isn’t great.

Let’s try something else!

4

Example 3.3. Suppose when we need to reallocate we do so by extending
the list length by exactly double, with the exception of a list of length 0
which will be extended to a list of length 1. In a worst-case what would this
cost per operation on average?

We start with a list of length 0. We want to push but we need to reallocate,
so we reallocate to length 1, which costs 1, and we push, which costs 1, for
a total cost of 1 + 1.

Zero Length List =⇒
Push

X

Now we want to push again but we need to reallocate again, so we reallocate
to length 2 (which also copies), which costs 2, and we push, which costs 1,
for a total cost of 2 + 1.

X =⇒
Push

X X

Now we want to push again but we need to reallocate again, so we reallocate
to length 4 (which also copies), which costs 4, and we push, which costs 1,
for a total cost of 4 + 1.

X X =⇒
Push

X X X

Now we want to push again and we don’t need to reallocate, say the reallo-
cation cost is 0, as we have space, thus the total cost is just 0 + 1.

X X X =⇒
Push

X X X X

Now we want to push again but we need to reallocate again, so we reallocate
to length 8 (which also copies), which costs 8, and we push, which costs 1,
for a total cost of 8 + 1.

X X X X =⇒
Push

X X X X X

Now we get three cheap pushes, and so on.

In brief we have:

• Push 1: Cost = 1 + 1

• Push 2: Cost = 2 + 1

• Push 3: Cost = 4 + 1

• Push 4: Cost = 1

• Push 5: Cost = 8 + 1

• Push 6: Cost = 1

• Push 7: Cost = 1

• Push 8: Cost = 1

• Push 9: Cost = 16 + 1

5

• Etc.

As we can see, after a reallocation from length k to length 2k and pushing,
we have k + 1 elements on the stack and hence have 2k − (k + 1) = k − 1
pushes which don’t require reallocation. Thus the total cost of pushing n
elements follows the pattern:

C(n) = (1+1)+(2+1)+(4+1)+(0+1)+(8+1)+(0+1)+(0+1)+(0+1)+(16+1)+...+???

This can be handily split up into push costs plus reallocation costs:

C(n) = 1 + 1 + ...+ 1︸ ︷︷ ︸
Push n Times

+ 1 + 2 + 4 + ...︸ ︷︷ ︸
Reallocate

To figure out how far to take the reallocation sum, observe that in this case
if we push a total of n elements then the final reallocation must be to a list
of length 2k with 2k ≥ n, that is k ≥ lg n, and in fact will be the smallest
such reallocation, meaning k = dlg ne. Thus the total cost is:

C(n) = n+ 1 + 2 + 4 + ...+ 2dlgne

= n+

dlgne∑
i=0

2i

= n+ 21+dlgne − 1

This can be bounded:

C(n) ≤ n+ 22+lgn − 1 = n+ 4n− 1 = 5n− 1

Thus the amortized cost satisfies:

AC(n) ≤ 5n− 1

n
= 5− 1

n
< 5

And so AC(n) = O(1).

4 Token Method

4.1 Introduction

To motivate the token method, suppose we perform n operations with costs x1,
x2, ..., xn respectively. The aggregate method simply calculates:

6

AC(n) =
x1 + x2 + ...+ xn

n

Let’s define β = AC(n) and observe that this can be rewritten:

β =
x1 + x2 + ...+ xn

n
βn = x1 + x2 + ...+ xn

(β − x1) + (β − x2) + ...+ (β − xn) = 0

It follows that finding the amortized cost β is equivalent to solving the equation:

(β − x1) + (β − x2) + ...+ (β − xn) = 0

Here’s how to think about this equation:

For each operation we put β tokens into a bank account and operation i costs
xi tokens which we must remove from the bank account. Cheaper operations
have xi < β while expensive operations have xi > β.

The idea is then that the cheap operations give rise to a surplus in our bank
account which can then be used to pay the rare but expensive operations.

4.2 Elementary Abstract Example

Let’s return to our simple warm-up example.

Example 4.1. Suppose we perform n operations. Each costs 2 (call this
the base cost) and every fifth operation costs an additional 10 (call this the
surplus cost). What can we say about the average per-cost operation?

Suppose we deposit β into our account with each operation. Think of our
operations in runs of five, each run ending with a surplus cost operation.

During each run we have four operations in which we deposit β and spend
2, yielding a net surplus of 4(β− 2) at the end of those four operations. For
the fifth operation we deposit β again and thus have a surplus of 4(β−2)+β
but now we need to spend 2 + 10 = 12. Thus we have to ensure that:

4(β − 2) + β ≥ 12

5β − 8 ≥ 12

5β ≥ 20

β ≥ 4

Thus provided we deposit at least 4 tokens per operation we are safe, and

7

so AC(n) = 4 = O(1), the same result as earlier.

4.3 Allocation for a Stack

Looking at the stack example from earlier, suppose we deposit β into the account
with each operation.

Example 4.2. As before, first suppose that when we need to reallocate we
simply add 1 to the length of the list. We claim that for each 1 ≤ k ≤ n we
have deposited enough in the account for push number k.

Observe that for each k we will have deposited a total of β+β+ ...+β = kβ
tokens. Pushes 1, 2, ..., k − 1 will have cost us (including allocation) a total
of:

(1 + 1) + (2 + 1) + (3 + 1) + ...+ (k − 1 + 1) =
k(k + 1)

2
− 1

Thus our balance will be:

kβ −
(
k(k + 1)

2
− 1

)
This needs to cover the cost of push k, which is k + 1, and so we need:

kβ −
(
k(k + 1)

2
− 1

)
≥ k + 1

kβ − 1

2
k2 − 1

2
k + 1 ≥ k + 1

kβ ≥ 1

2
k2 +

3

2
k

β ≥ 1

2
k +

3

2

Since this must hold for all 1 ≤ k ≤ n we must have:

β ≥ 1

2
n+

3

2

The smallest value would then be:

β =
1

2
n+

3

2
= O(n)

Now let’s look at the doubling option.

8

Example 4.3. We divide the process into runs. Each run starts right after
a reallocation plus push and ends right after the next reallocation plus push.
Consequently each run consists of cheap pushes and ends with an expensive
reallocation. Our goal is to show that we collect enough tokens during the
cheap pushes to cover the reallocation.

Note: The first and last runs are special and we’ll ignore those for now.

Suppose we have just reallocated from length k to length 2k and done a
push, meaning there are k + 1 elements on the stack. The next reallocation
will occur at length 2k, when we reallocate to 4k and do a push to 2k + 1
elements. Before that happens we will get at least k − 1 cheap pushes and
then one final push over the edge, which is expensive.

Each cheap push collects β tokens and spends 1 for a net gain of β − 1
tokens. Thus at the end, right before the reallocation plus push we have at
least (β − 1)(k − 1) tokens in the bank.

The final push, not counting the reallocation, collects β tokens as well and
spends 1 on pushing, meaning we have at (β−1)(k−1) + (β−1) = (β−1)k
tokens in the bank.

However the reallocation to length 4k costs 4k and so we must have:

(β − 1)k ≥ 4k

β − 1 ≥ 4

β ≥ 5

The smallest value would then be:

β = 5 = O(1)

9

5 Futher Examples

Here is a different but classic example:

Example 5.1. Suppose we have an list A which represents a binary string,
so A[0] represents the 20 = 1s digit, A[1] represents the 21 = 2s digit, A[2]
represents the 22 = 4s digit, and so on.

Suppose A starts at all 0s and we then implement n increment operations.
Every time a bit flips the cost is 1. Let’s calculate the corresponding amor-
tized cost using the aggregate method.

Observe that every increment flips A[0], every second increment flips A[1]
as well, every fourth increment flips A[2] as well, and so on.

This means that if we implement n increments A[0] will flip n times, A[1]
will flip bn/2c times, A[2] will flip bn/4c times, and so on, for a total cost
of:

C(n) = n+ bn/2c+ bn/4c+ ... =

∞∑
k=0

⌊
n/2k

⌋
This sum is not infinite because a term is nonzero when n/2k ≥ 1 and this
happens for k ≤ lg n, which for integers is k ≤ blg nc, thus the total cost is
really:

C(n) =

blgnc∑
k=0

⌊
n/2k

⌋
This is a bit of an awkward sum because of the inner floor function so we’ll
bound it:

C(n) ≤
blgnc∑
k=0

n/2k

≤ n
blgnc∑
k=0

(
1

2

)k

≤ n
(

1− (1/2)1+blgnc

1− 1/2

)
≤ 2n

(
1−

(
1

2

)1+lgn
)

10

The amortized cost then satisfies:

AC(n) ≤ 2

(
1−

(
1

2

)1+lgn
)

Lastly, observe that for any n we have AC(n) < 2 and so in fact AC(n) =
O(1).

11

	Introduction
	Typically Worst-Case
	Aggregate Method
	Introduction
	Elementary Abstract Example
	Allocation for a Stack

	Token Method
	Introduction
	Elementary Abstract Example
	Allocation for a Stack

	Futher Examples

