
CMSC 420: Binary Search Trees

Justin Wyss-Gallifent

February 8, 2024

1 Overview . 2
2 Search . 2

2.1 Algorithm . 2
2.2 Time Complexity . 3

3 Insert . 3
3.1 Algorithm . 3
3.2 Time Complexity . 3

4 Delete . 3
4.1 Algorithm . 3
4.2 Time Complexity . 5

5 Tree Height Notes . 5

1

1 Overview

Definition 1.0.1. A binary search tree (BST) is a binary tree, meaning each
node has 0, 1, or 2 children. Each node has both a key and a value.

The nodes are arranged such that an inorder traversal yields the keys in increas-
ing order.

More specifically, for any given node with key k the left subtree of a node
contains only keys less than k and the right subtree of a node contains only
keys greater than k.

Example 1.1. Here is a binary search tree that contains the ID numbers
(double digit numbers) and names of some students:

50, Chris

40, Susan

31, Bauhaus 45, Frakkur

42, Lil Nas X

57, Joe

52, Lady Gaga 60, Michelle

61, Beyonce

Note 1.0.1. For ease of study typically our keys will be unique positive integers
and we will not bother with listing or discussing the values. One could think,
for example, that the keys are student IDs and the values are student names,
or entire records.

In reality the keys can be members of any totally ordered set, loosely meaning
any set such that we can compare and order any two elements within the set.
This means we could use integers, real numbers, or words with alphabetical
ordering.

2 Search

2.1 Algorithm

Finding a particular key in a binary search tree is easy. We start at the root
node. If that key matches, we’re done. Otherewise if the target key is smaller,
we follow the tree left, and if the target key is larger, we follow the tree right.

We either find the key or we fall out of the tree at a root node and the key
doesn’t exist.

2

2.2 Time Complexity

In the best case we’re searching for the root. This is Θ(1).

In the worst case the tree is basically a linked list. This is Θ(n).

3 Insert

3.1 Algorithm

To add a new key to a binary search tree we start at the root and follow the
branches by comparing the new key to the keys at the nodes, just as if we were
looking for the new key. When we fall out of the tree at the leaf, this tells us
where we should put the new node and so we simply attach it at the bottom.

Example 3.1. Given the tree from earlier, with the names suppressed, let’s
insert the key 53. We start at the root and follow the appropriate path.
In the figure below we’ve highlighted the trip through the tree in the first
picture and then the attached node in the second:

50

40

31 45

42

57

52 60

61

=⇒
Insert 53

50

40

31 45

42

57

52

53

60

61

3.2 Time Complexity

In the best case the tree is basically a linked list and we’re inserting on the other
side. This is Θ(1).

In the best case the tree is basically a linked list and we’re inserting on the
linked list side. This is Θ(n).

4 Delete

4.1 Algorithm

Deleting a key is more challenging. The approach is as follows:

1. If the key is at a leaf node then it’s easy, we just throw out that node.

3

2. If the key is at a node with just one child then it’s easy, we remove that
key and promote the child (and its entire subtree)

3. If neither of these are true, then it’s a bit tricky. First we’ll find a replace-
ment key from further down the tree. We can use either the smallest key
from the right subtree (go right once, then left as far as possible, if at all
- this is the inorder successor) or we can use the largest key from the left
subtree (go left once, then right as far as possible, if at all - this is the
inorder predecessor) We take this replacement key (well, entire node) and
we move it up to our deleted node. Now we need to fill the hole left by
the replacment node. However by contruction the replacement node was
one of the first two types, so it’s easy and we’re done.

Note 4.1.1. Why do these choices work? Well in general the replacement key
needs to be larger than everything else in the deleted node’s left subtree and
smaller than everthing else in the deleted node’s right subtree so that when we
replace it, the properties of a binary search tree are preserved.

This means choosing finding the node whose key is either next smallest from
the deleted node’s key or next largest from the deleted node’s key.

These correspond to our two options.

Note 4.1.2. Convince yourself of two things:

• Using the inorder successor as a replacement preserves the binary search
tree nature of the tree.

• The inorder successor is the leftmost key from the right subtree.

Also convince yourself that the inorder predecessor would work, too.

Example 4.1. Let’s delete the node with key 45 from the following tree.
First we throw it out, leaving a hole:

50

40

30

20 31

45

42 48

46

47

49

100

70 110

105 200

=⇒

50

40

30

20 31 42 48

46

47

49

100

70 110

105 200

The inorder successor - go right to 48, then left as far as possible - is 46, so
we swap 46 into the hole. This leaves a new hole:

4

50

40

30

20 31 42 48

46

47

49

100

70 110

105 200

=⇒

50

40

30

20 31

46

42 48

47

49

100

70 110

105 200

But now the hole has one child so we simply promote that child.

50

40

30

20 31

46

42 48

47 49

100

70 110

105 200

Note that if that child had a subtree then it would just go along for the ride.

4.2 Time Complexity

The time complexity of delete is a bit nuanced. The actual deletions and re-
placements are Θ(1) but the finding of nodes is the critical issue.

In the best case we’re deleting the root. This is Θ(1).

In the worst case the tree is basically a linked list and we’re deleting the bottom
node. This is Θ(n). Note that we might argue that having replacements might
make it worse but even then, in the worst case we would find a node, replace it
with a node further down, then do a promotion, and all of this is still Θ(n).

5 Tree Height Notes

A few notes about the height of a binary search tree with n nodes:

1. It is obvious that in a worst-case scenario the tree can grow to height n−1
essentially as a linked list.

2. It is also fairly easy to calculate that in a best-case scenario the tree will
have height h where h is the smallest integer satisfying h ≥ lg(n + 1)− 1,
so h = dlg(n + 1)− 1e. This will happen if the tree is a complete binary
tree.

5

3. The average-case scenario is a little more difficult. It can be shown, and
this is not trivial, that if n distinct keys are inserted into a binary search
tree and if we look at all possible n! possible insertion orders, the expected
height is O(lg n).

Some evidence can be easily gathered by picking an n, taking each per-
mutation of {1, 2, ..., n} and constructing a binary search tree using each
permutation and then averaging all the heights.

Example 5.1. If n = 3 there are six possible permutations yielding
the following six binary search trees:

{1, 2, 3}: 1

2

3

{2, 1, 3}: 2

1 3

{3, 1, 2}: 3

1

2

{1, 3, 2}: 1

3

2

{2, 3, 1}: 2

1 3

{3, 2, 1}: 3

2

1

The average height is:

2 + 2 + 2 + 2 + 1 + 1

6
=

5

3

If we do this for various n (work omitted - try it!) we find the following:

n Average Height
1 0
2 1
3 10/6 ≈ 1.67
4 56/24 ≈ 2.33
5 336/120 = 2.8
6 2352/720 ≈ 3.27
7 18496/5040 ≈ 3.67
8 161984/40320 ≈ 4.02
9 1575040/362880 ≈ 4.34
10 16841600/3628800 ≈ 4.64

If we plot these we get the following, which clearly appears logarithmic:

6

2 4 6 8 10

1

2

3

4

4. David Mount’s notes contain a proof of a lighter version of this, namely
that the leftmost node is at expected depth O(lg n).

5. The analysis is more challenging if we allow deletions. A sense of “average
case” can be imparted by assuming we make a series of insertions and
deletions such that there are an average of n nodes in the tree. It turns
out that the expected height is not O(lg n) but the worse O(

√
n). This

turns out to be caused by the fact that in deletion we typically use the
inorder successor and this causes a less balanced tree. Evidence (but no
proof) suggests that randomly choosing between the inorder successor and
the inorder predecessor resolves this.

7

	Overview
	Search
	Algorithm
	Time Complexity

	Insert
	Algorithm
	Time Complexity

	Delete
	Algorithm
	Time Complexity

	Tree Height Notes

