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1 Introduction

B-trees are generalizations of 2-3 trees in which the number of keys and children
is permitted to vary.

In addition in 2-3 trees overfull nodes were always split whereas in B-trees
overfull nodes may be fixed by rotation.

Note 1.0.1. In theory we could have fixed overfull nodes in 2-3 trees by rotation
but in practice that’s not how the definition was formulated originally.

Note 1.0.2. There are several references to 2-3 trees in these notes. If you are
not familiar with these it’s fine; while knowing 2-3 tree might help a bit, none
of those references are essential

2 Definition

Definition 2.0.1. For an integer m ≥ 3 a B-tree of order m is a multiway
search tree with the following properties, assuming it’s not empty:

• The root has between 1 and m− 1 keys and if it has children then it must
have one more children than keys, hence between 2 and m children.

• Each node except the root has between dm/2e − 1 and m − 1 keys and
if it has children then it must have one more children than keys, hence
between dm/2e and m children.

• All leaf nodes are at the same level.

By a multiway search tree we mean a generalization of BSTs and 2-3 trees. If
a node has keys a1 < a2 < ... < ak then the children are roots of subtrees
A1, ..., Ak+1 with keys satisfying A1 < a1 < A2 < a2 < ... < ak < Ak+1.

Note 2.0.1. Observe that by definition a B-tree is perfect, meaning it is full
on every level.

Example 2.1. Here is an example of a B-tree of order m = 5. The root
must have between 2 and m = 5 children (hence 1 and 4 keys) while the
other nodes must have betwee dm/2e = d5/2e = 3 and 5 children (hence 2
and 4 keys). The leaf nodes are shown as vertical just for spacing reasons.
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3 Height

As with many of our other trees the height is logarithmic as a function of the
number of nodes and keys. Here is the proof for keys, which is more relevant
since typically we are interested in key counts:

Theorem 3.0.1. Suppose B-tree of order m has k keys and height h. Then:

(a) The sparsest possible such tree (minimum number of keys) has:

k = 2 dm/2eh − 1

(b) Consequently any such tree has:

k ≥ 2 dm/2eh − 1

(c) And it then follows that:

h ≤ logdm/2e

(
k + 1

2

)

(d) Thus:
h = O(lg k)

Proof. To obtain the minimum number of keys we need the fewest keys allowed
per node. The following table illustrates the minimum number of nodes and
keys for each level 0 (the root) through h (the leaves).

Level Min Nodes Min Keys
0 1 1
1 2 2(dm/2e − 1)
2 2 dm/2e 2 dm/2e (dm/2e − 1)

3 2 dm/2e2 2 dm/2e2 (dm/2e − 1)
...

...
...

h 2 dm/2eh−1 2 dm/2eh−1 (dm/2e − 1)
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The total number of keys then satisfies, at minimum:

k = 1 +

h−1∑
i=0

2 dm/2ei (dm/2e − 1)

= 1 + 2(dm/2e − 1)

h−1∑
i=0

dm/2ei

= 1 + 2(dm/2e − 1)

(
dm/2eh − 1

dm/2e − 1

)
= 1 + 2(dm/2eh − 1)

= 2 dm/2eh − 1

It follows that since this is a minimum that:

k ≥ 2 dm/2eh − 1

Then:

2 dm/2eh − 1 ≤ k

dm/2eh ≤ k + 1

2

h ≤ logdm/2e

(
k + 1

2

)

QED

Example 3.1. For example if a B-tree of order m = 20 contains k = 999
keys then the maximum possible height can be calculated via:

h ≤ logd20/2e

(
999 + 1

2

)
= log10 500 ≈ 2.6987

Since height must be an integer the maximum height is 2.

As an aside, the sparsest possible B-tree of order m = 20 with height h = 2
has:

k = 2 d20/2e2 − 1 = 199

So our B-tree (with m = 20 and h = 2) with 999 keys is far from being the
sparsest.
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To reinforce why h ≤ 2 observe that the sparsest possible B-tree of order
m = 20 with larger height h = 3 has:

k = 2 d20/2e3 − 1 = 1999

Thus any B-tree of order m = 20 with larger height h = 3 has k ≥ 1999 and
so our 999 keys are not enough for a B-tree of order m = 20 with height
h = 3.

Theorem 3.0.2. Suppose B-tree of order m has k keys and height h. Then:

(a) The densest possible such tree (maximum number of keys) has:

k = mh+1 − 1

(b) Consequently any such tree has:

k ≤ mh+1 − 1

(c) And it then follows that:

h ≥ logm(k + 1)− 1

(d) Thus:
h = Ω(lg k)

Proof. Omitted. Try it! It’s similar to but easier than the previous. QED

Example 3.2. For example if a B-tree of order m = 20 contains k = 999
keys then the minimum possible height can be calculated via:

h ≥ log20(999 + 1)− 1 ≈ 1.3059

Since height must be an integer the minimum height is 2.

As an aside, the densest possible B-tree of order m = 20 with height h = 2
has:

k = 202+1 − 1 = 7999

So our B-tree (with m = 20 and h = 2) with 999 keys is far from being the
densest.

To reinforce why h ≥ 2 observe that the densest possible B-tree of order
m = 20 with smaller height h = 1 has:

k = 201+1 − 1 = 399
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Thus any B-tree of order m = 20 with smaller height h = 1 has k ≤ 399 and
so our 999 keys could not fit in a B-tree of order m = 20 with height h = 1.

Theorem 3.0.3. We have h = Θ(lg k).

Proof. Follows immediately. QED

4 Advantages

There are several advantages to using B-trees, including:

• Due to the number of keys that a node may contain there is consequently
less tree balancing required when inserts and deletions occur.

• When a key is found in a node, a large collection of close keys are imme-
diately accessible. This manifests in file storage where access (finding the
node) is far slower than reading the data (once the node has been found).

• When doing range queries (find all values between x and y) it’s easy to
pluck grouped values out of a node.

• Although as we’ll see the restructuring process must be managed carefully
it turns out that it only happens infrequently because of the amount of
empty key space permissible in a node.

5 Search

Since this is a multiway search tree, finding a key is easy, just like with binary
search trees, AVL trees, and 2-3 trees.

6 Tree Restructuring

6.1 Introduction

Recall that in a 2-3 tree we had to manage the issues of an overfull node when a
3-node became a 4-node, and an underfull node when a 2-node became a 1-node.
Similarly for B trees we must manage:

• Overfull Node: A node has m + 1 children (m keys).

• Underfull Node: A node has dm/2e − 1 children (dm/2e − 2 keys).

To deal with these issues we introduce three restructuring operations:

6.2 Rotation

The best possible situation arises when a node is underfull or overfull but there
are extra keys in an adjacent sibling that we can use to restructure. This is
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called a key rotation and it’s the best possible because it’s not computationally
intensive.

Suppose a key in node n1 is overfull but the sibling n2 directly to the right has
key space. We take the largest key in n1, promote it to and replace the next
largest key in the parent which gets demoted to the n2 sibling, putting it at
the start of n2’s keys. We also move n1’s largest child to become n2’s smallest
child. This is a right rotation.

A mirror argument works if a node n1 is overfull but the sibling n2 directly
to the left has key space. We take the smallest key in n1, promote it to and
replace the next smallest key in the parent which gets demoted to the n2 sibling,
putting it at the end of n2’s keys. We also move n1’s smallest child to become
n2’s largest child. This is a left rotation.

This approach will also work if a node is underfull and a sibling has an extra
key it can donate.

Note that this will only work if there is an adjacent sibling in a position to help!

Here is an illustration of a right rotation in action for m = 6, The node on the
left is overfull, it (temporarily) has seven children and six keys. Its sibling on
the right has space so we rotate over.

... Y ...

a b c d e X !

x

f g h

y

⇓ Right Rotate!

... X ...

a b c d e Y f g h

x

6.3 Splitting

Consider a B-tree of order m. A node can have at most have m children and
m− 1 keys but suppose it temporarily has m+ 1 children and m keys. This can
arise from an insertion as we will see shortly.

In brief we take the median (or lower median) key from the overfull node and
we promote it to the parent, inserting it at the location of the parent’s branch
which led to the overfull node. That branch is eliminated. The left and right
keys and children from the overfull node break up to form two new nodes which
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are connected to the parent by two new branches which straddle the newly
inserted node.

As a result of this the parent gains a key and a child, meaning it may also
overflow and we then need to manage that problem one level up.

While this simplistic explanation works fine in practice it can be helpful to
convince ourselves that the numbers work out nicely in terms of key and child
counts.

If the number of keys m is odd:

(a) Take the median key and promote it to the parent, inserting it where the
node’s parent branch extended. This leaves an even m− 1 keys with (m−
1)/2 smaller and (m− 1)/2 larger.

(b) Take the (m− 1)/2 keys which are smaller than this median as well as the
(m− 1)/2 + 1 = (m + 1)/2 leftmost children and create a new node.

(c) Take the (m − 1)/2 keys which are larger than this median as well as the
(m− 1)/2 + 1 = (m + 1)/2 rightmost children and create a new node.

To ensure this works we have to make sure that each of the new nodes is valid,
meaning each has between dm/2e and m children. In other words we claim that:

⌈m
2

⌉
≤ m + 1

2
≤ m

But since m is odd we have dm/2e = (m+ 1)/2 so the left inequality holds and
(m+1)/2 ≤ m is equivalent to m+1 ≤ 2m and to m ≥ 1 so the right inequality
holds.

Example 6.1. For example if m = 7 then we can have at most 6 keys. If
there are 7 keys (hence 8 children) we take the median key and promote it to
the parent. We take the 3 smaller keys as well as the 4 leftmost children and
create a new node and we take the 3 larger keys as well as the 4 rightmost
children and create a new node. Observe that the number of children of each
of these new nodes satisfies dm/2e = 4 ≤ 4 ≤ 7 = m.

If the number of keys m is even:

(a) Take the lower median key and promote it to the parent, inserting it where
the node’s parent branch extended. This leaves an odd m − 1 keys with
(m− 2)/2 smaller and m/2 larger.

(b) Take the (m − 2)/2 keys smaller than this lower median as well as the
(m− 2)/2 + 1 = m/2 leftmost children and create a new node.

(c) Take the m/2 keys larger than this lower median as well as the m/2 + 1
right children and create a new node.

To ensure this works we have to make sure that each of the new nodes is valid,
meaning each has between dm/2e and m children. In other words for the new
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leftmost node we claim that: ⌈m
2

⌉
≤ m

2
≤ m

But since m is even we know dm/2e = m/2 so the left inequality holds and
m/2 ≤ m is equivalent to m/2 ≥ 0 so the right inequality holds.

And for the new rightmost node we claim that:⌈m
2

⌉
≤ m

2
+ 1 ≤ m

But since m is even we know dm/2e = m/2 so the left inequality holds and
m/2 + 1 ≤ m is equivalent to m ≥ 2 so the right inequality holds.

Example 6.2. For example if m = 8 then we can have at most 7 keys. If
there are 8 keys (hence 9 children) we take the lower median key and promote
it to the parent. We take the 3 smaller keys as well as the 4 leftmost children
and create a new node and we take the 4 larger keys as well as the 5 rightmost
children and create a new node. Observe that the number of children of the
leftmost new node satisfies dm/2e = 4 ≤ 4 ≤ 8 = m and the rightmost new
node satisfies dm/2e = 4 ≤ 5 ≤ 8 = m.

Here is an illustration of a split in action for m = 7. In such a B-tree a non-leaf
node may have between dm/2e = d7/2e = 4 and m = 7 childrean and between
3 and 6 keys. The middle node is overfull, it (temporarily) has 8 children and
7 keys. We split it.

... X Z ...

a b c Y d e W !

w

⇓ Split!

... X Y Z ...

a b c d e W

w

6.4 Merging

Consider a B-tree of order m. A node can at least have dm/2e children and
dm/2e−1 keys but suppose it temporarily has dm/2e−1 children and dm/2e−2
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keys. This can arise directly from a deletion as we will see shortly.

First, if either of its adjacent siblings has more than dm/2e children then a key
rotation does the job and we’re fine.

If not, then both siblings have exactly dm/2e children. What we will do is pick
one of them and merge our underfull node with that sibling.

Notice that when we do this the parent loses a child (because two siblings merge
to one) which means it must lose a key. We take, from the parent, the key which
separated the two siblings and we demote that key to the newly merged node,
inserting it between the keys from the two merging nodes. It turns out that this
works well except for the fact that then the parent may be underfull now and
we then need to manage that problem one level up.

While this simplistic explanation works fine in practice it can be helpful to
convince ourselves that the numbers work out nicely in terms of key and child
counts.

Observe that our underfull node has dm/2e − 1 children and dm/2e − 2 keys
and the sibling we chose has at dm/2e children and dm/2e − 1 keys. When we
merge them there are 2 dm/2e−1 children and 2 dm/2e−3 keys. Note that this
is enough children but not enough keys; we’ll cross that bridge in a minute.

First we need to ascertain that:

dm/2e ≤ 2 dm/2e − 1 ≤ m

This can be proved with an even-odd argument as with splitting. Try it!

Now for the key issue. We’re short one key so we demote the key from the
parent which was between the edges which connect the two adjacent nodes we
are merging. The parent loses a key and a child, so its count is fine, but it
might be underfull, and when this appears in the delete procedure it will just
propagate.
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Here is an illustration of a merge in action for m = 7, The left node is underfull
but neither adjacent sibling can offer a key (left sibling not shown) so we merge
with a sibling (the right in this case).

X Y Z

a b c d e

⇓ Merge!

X Z

a b Y c d e
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7 Insert

7.1 Algorithm

At this point insertion is easy. We find the correct leaf node and insert it and
then we rotate and/or split up the tree until the restructuring is finished. Note
that it’s possible that no restructuring is required at all.

Example 7.1. Let’s insert 19 into this B-tree:
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Luckily there is space in its right sibling and so we can do a rotation:
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Now we are done.

Example 7.2. Let’s say we take the result of the previous exercise and
insert 23. This overflows that leaf:
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Neither adjacent sibling has space for a rotation so instead we split the over-
full node in the middle, at the 22 and promote that middle 22. Unfortunately
due to the promotion of the 22 the parent node is now overfull:
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Luckly the parent has a sibling to the right which can accept a key, so we
rotate it over:
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Now we are done.

7.2 Time Complexity

Each rotation and split is Θ(1), occuring up to Θ(lg n) or Θ(lg k) times, for a
total worst-case of Θ(lg n) or Θ(lg k).
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8 Delete

8.1 Algorithm

At this point deletion is easy. If the target key is not in a leaf then we find a
replacement key (the inorder predecessor or successor). This replacement key
will necessarily be in a leaf so effectively we are deleting a key from a leaf.

If the leaf is not underfull we are done, otherwise we rotate and/or merge up
the tree until the restructuring is finished.

Example 8.1. Let’s delete 66 from this tree:
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The result yields an underfull node:
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Neither adjacent sibling can offer a key via rotation so the only choice is to
merge with a sibling. Let’s merge with the left sibling, which means that
the sandwiched key 54 in the parent is pulled down:
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Luckily the parent could give up a key with no issue and we are done.

8.2 Time Complexity

Each rotation and merge is Θ(1), occuring up to Θ(lg n) or Θ(lg k) times, for a
total worst-case of Θ(lg n) or Θ(lg k).

14



9 B+ Trees

9.1 Structure

A B+ tree is a variation on a B-tree whereby:

• Internal nodes do not store values (the actual data) but rather just the
keys. In our representations we haven’t actually shown values, just keys,
so the image below has some to help clarify.

• All the key-value pairs are stored in the leaf nodes.

• Each leaf node has a pointer which points to the leaf node to the right.

Essentially the keys in the internal node are guideposts to the leaf nodes and
the leaf nodes contain the key-value pairs which really constitute the data.

Note 9.1.1. Insertion and deletion in B+ trees are more complicated than in
B trees because:

• Insertion always inserts in a leaf and internal nodes are only created as
part of the splitting process. However we can’t simply promote a key
from a leaf to its parent because the key needs to remain in the leaf to be
associated to its data. Consequently a key may appear twice in the tree -
in a leaf and in an internal node.

• Since keys may appear both in leaf as well as internal nodes, deletion of a
key must take care of both.

Example 9.1. Here is a B+ tree with m = 4. As with a B-tree the root
node may have between 2 and m = 4 children and hence between 1 and 3
keys and every other node may have between dm/2e = 2 and m = 4 children
and hence between 1 and 3 keys: Each leaf node also has a value (some data)
associated to its key.
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B+ trees have a few benefits including:

• Since the values (data) are saved only in the leaves this saves space in
internal nodes.

• All queries (looking for keys with associated values) will reliably travel to
the bottom of the tree.

• Range queries are especially nice. For example in the above tree if we’re
looking for all keys (with values) in the range [30, 88] we simply find the
30 and then follow the leaf nodes across.
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9.2 Range Queries

Here is a range query example.

Example 9.2. Same example with the above range query [30, 88]:
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9.3 Application: Databases

Imagine a sequential database in which each row has a non-unique ID and the
rows are in no particular order.

If we wish to query for all rows with a particular ID we would need to go through
all the rows sequentially and pick out those with that ID. This can take a long
time.

If we create an index on the ID the result is typically a B+ tree in which the
IDs are the keys and the values are the row numbers. Then when we search for
a particular ID, or range of IDs, we quickly get back a list of rows we ought
to look at and we can go directly those rows in the database to get the actual
data.
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