
CMSC 420: Disjoint-Set Data Structures

Justin Wyss-Gallifent

December 6, 2023

1 Introduction . 2
2 Implementation . 2
3 Three Basic Operations Version 1 3

3.1 Introduction . 3
3.2 Creating a New Subset with a New Element 3
3.3 Finding Subset Representatives 3
3.4 Union of Subsets . 4
3.5 Time Complexity . 4

4 Three Basic Operations Version 2 5
4.1 Introduction . 5
4.2 Finding Subset Representatives Revisited 5
4.3 Union of Subsets Revisited 6
4.4 Time Complexity Revisted 7

5 Simple Graph Management . 7
5.1 Introduction . 7
5.2 Representing Connected Components 8
5.3 Edge Information and Addition 8
5.4 Cycle Detection . 8
5.5 Does Adding an Edge Form a Cycle? 9

6 Kruskal’s Algorithm . 10
6.1 Introduction . 10
6.2 Using a Disjoint Set Data Structure 10
6.3 Time Complexity . 10

7 Maze Generation . 11
7.1 Introduction . 11
7.2 Using a Disjoint Set Data Structure 11
7.3 Time Complexity . 13

1

1 Introduction

Disjoint-set data structures, also called union-find data structures, are a class
of data structure which stores elements according to disjoint sets they are in in
a way which allows us to do things such as:

• Discover if two elements are in the same disjoint set.

• Merge two disjoint sets to form a new one.

Disjoint-set data structures are heavily used in Kruskal’s Algorithm for finding
a minimal spanning tree, specifically for checking if there is a cycle in the graph.

2 Implementation

The most common way to implement a disjoint-set data structure is a forest,
or a collection of trees. We’ll call this a disjoint set forest or just a forest for
short. Each tree will correspond to a subset and each node within that tree to
an element. The trees will be a bit non-traditional in that each node will only
contain a pointer to its parent. For each subset, one node will be chosen as the
root. This is a representative of the subset. The root nodes have no parent of
course and it’s traditional to have their parent pointers point to themselves.

There is no real limit to the number of children a node could have since we
aren’t storing child data.

Example 2.1. Consider the set of elements {0, 1, 2, 3, 4, 5, 6, 7} divided into
three disjoint subsets {0, 1, 6}, {2, 4, 7}, and {3, 5}.
We’ll store this by creating three trees, one for each subset. Here they are.
In these pictures I’ve not drawn the parent pointers (pointing to themselves)
out of habit:

1

0 6

2

4 7

3

5

In such case we chose the representatives 1, 2, and 3 but this was arbitrary.
In fact this forest would work, too:

0

6

1

4

2 7

5

3

In addition the structure of these trees can be stored in a simple list A indexed
with the number of elements whereby A[i] is equal to the parent index. In such

2

a case for a root r we assign A[r] = r.

Example 2.2. The second picture in the above example would be stored
easily as:

A = [0, 6, 4, 5, 4, 5, 0, 7]

This is because:

• A[0] = 0 since 0 is a root.

• A[1] = 6 since 1→ 6.

• A[2] = 4 since 2→ 4.

• And so on...

Observe that A[0] = 0 and A[4] = 4 and A[5] = 5 as they are the roots.

Before proceeding, we have:

Definition 2.0.1. For an element x in the set, define the root of x, denoted
root(x), to be the root of the tree containing x.

In this sense the representative of a subset can be found by taking root(x) for
any x in the subset.

3 Three Basic Operations Version 1

3.1 Introduction

There are three basic operations we can easily perform with our disjoint subset
data structure.

3.2 Creating a New Subset with a New Element

If a new element is introduced we simply create a node (or list entry) which
points to itself.

3.3 Finding Subset Representatives

To find the representative for a subset means to find the root. The following
pseudocode will do this. This pseudocode is premised on the fact that the root’s
parent is itself.

The pseudocode would look like:

function findrep(x)

if x.parent == x

return(x)

else

return(findrep(x.parent))

3

end if

end function

Observe that finding subset representatives allows us to easily see if two elements
are in the same subset. Given two elements x and y we can check if they’re in
the same set by checking if findrep(x) == findrep(y).

Note 3.3.1. You might wonder why we didn’t just call this function root,
since we’re finding the root. The answer is that in a bit we’ll tweak it so that it
adjusts the tree and we’d like to keep the root(x) so that it simply returns the
root.

3.4 Union of Subsets

Given two subsets it’s easy to merge them. Suppose x and y are elements and we
wish to merge the subsets which contain them. We check root(x) and root(y).
If they’re the same then there’s nothing to do. If they’re not the same then we
simply set the parent of root(x) (which was originially root(x)) to be root(y).

Example 3.1. For example:

0

1 2

x

∪
4

5 y

=

4

0

1 2

x

5 y

The pseudocode would look like:

function union(x,y)

if findrep(x) != findrep(y)

findrep(x). parent = findrep(y)

end if

end function

3.5 Time Complexity

The major issue with the above operations is that it’s possible for the trees
representing the subsets to get very unbalanced. For example if we have n
elements total we might end up with one subset with n elements for which the
tree is a list of length n, or we might end up with two subsets with n/2 elements
for which the trees are lists of length n/2.

4

In such cases the second two operations run with time O(n) which is less than
ideal.

4 Three Basic Operations Version 2

4.1 Introduction

We’d like to speed up our operations!

We might suggest some ideas like - keeping the trees balanced, but that takes
time itself. Can we do something else?

The answer is yes and it’s anchored in the fact that our trees have two interesting
properties. First, there is no child limit, and second, we have parent pointers.
This allows us to modify our second two operations so that they keep the trees
“short”.

4.2 Finding Subset Representatives Revisited

When we are finding a subset representative of the subset containing the element
x we follow the graph from x to root(x). While we’re doing this we can actually
easily modify all the nodes along the root so that their parents are root(x).

Here is the modified pseucode. Note that it runs just as fast as it did before.

function findrep(x)

if x.parent == x

return(x)

else

return(x.parent = findrep(x.parent))

end if

end function

Here’s an example to see what it does:

Example 4.1. This example demonstrates what our updated findrep(5)

will do:

5

1

2 3

4

5

6

=⇒
1

2 3 4 5

6

It turns out that if we do this every time we look for the representative we keep
the tree short enough to reduce the time complexity significantly. We call this
path compression.

4.3 Union of Subsets Revisited

Taking the union of subsets is what can lead to trees getting rather tall so
perhaps there’s a way to carefully join the trees so that this doesn’t happen.
There are, and we’ll look at one of them.

Given two elements x and y When we took the union earlier we simply set
root(x) = y. However suppose the tree containing x has height hx and the tree
containing y has height hy. If we set root(x) = y then the new tree has height
hx + 1 whereas if we set root(y) = x then the new tree has height hy + 1. We
could of course record the heights of the trees and choose the shorter option but
keeping track of tree heights takes time and care, especially given the fact that
we’re repeatedly messing with them in this case.

Instead a reasonable proxy for tree height is the number of elements. A tree with
more elements tends to be higher. Moreover keeping track of element counts is
easy. When we create a tree with one element we store its size as 1 and when
we merge two trees we add their sizes.

So what we will do is pick the tree with fewer elements and attach the root of
that tree to the root of the tree with more elements. We call this the weighted
union. It turns out that this small change has a massive impact.

6

Here is the modified pseucode. Note that it runs just as fast as it did before.
Also note that when are finding the root in order to complete the union we use
path compression.

function union(x,y)

if findrep(x) != findrep(y)

if x.size < size.y

findrep(x). parent = findrep(y)

else

findrep(y). parent = findrep(x)

end if

end function

Example 4.2. For example here is the result of union(3,5). Notice that
findrep(3) performs path compression:

0

1 2

3

7

∪
4

5 6

=

0

1 2 3

7

4

5 6

4.4 Time Complexity Revisted

These small changes punch above their weight. If we implement them then
amortized analysis shows that any series of our three operations runs in O(α(n))
amortized time, where α is the inverse of the Ackermann function which is
“essentially constant”. The inverse of the Ackermann function is an increasing
function which is less than 4 for all n less than approximately 10600.

This means that our set operations essentially run in constant amortized time!

The proof of this amortized time complexity is not trivial. If you are interested
you can find it in the classic CLRS (Cormen, Leiserson, Rivest, Stein) algorithms
testbook.

5 Simple Graph Management

5.1 Introduction

Here are some tools for managing simple graphs. In what follows we’ll assume
that we have some fixed number n of vertices and the only thing that changes
is the edges.

7

5.2 Representing Connected Components

Given a (not necessarily connected) graph with n vertices suppose we partition
the set of vertices into subsets according to which connected component. These
subsets will be disjoint and their union will be the set of all vertices.

Example 5.1. Consider the following graph:

0

1

2

3

4

5

6

7

8

9

The disjoint sets of vertices are:

{0, 1, 2}, {3, 4, 5}, {6, 7, 8, 9}

These can be represented by the forest:

1

2 0

5

4 3

6

7 8

9

5.3 Edge Information and Addition

First observe that the disjoint set data structure can only tell us if two vertices
u and v are in the same connected component, it cannot tell us if an edge exists
between them.

Consequently the impact of adding an edge between vertices u and v would
simply be to ensure that the two components are connected. This simply means
taking the union of the two components with union(x,y). The result will be
possibly some path compression as well as a union of the components if they
are disjoint.

5.4 Cycle Detection

The disjoint set data structure cannot detect whether a cycle exists in the graph
because it only stores information about connected components.

8

5.5 Does Adding an Edge Form a Cycle?

All hope is not lost, however. For two vertices u and v, suppose we know the
following two things:

• There is no edge between u and v

• There are no cycles in the graph.

Then we can detect if adding an edge (u, v) will create a cycle. We do this
simply by check if root(u) = root(v), or in code if findrep(u)==findrep(v).
If this is true then u and v are in the same component and since they are not
already connected by an edge then adding such an edge will create a cycle. If
this is false then they are not in the same component and adding such an edge
will simply union those components.

Note that we have seen that we can check this in O(α(n)) amortized time, which
is almost constant.

Example 5.2. Returning to our example:

Does addition of the edge (3, 6) form a cycle? Well the root of 3 is 5 and
the root of 6 is 6 so no.

Does addition of the edge (1, 2) form a cycle? Well the root of 1 and the
root of 2 are both 1 so yes.

9

6 Kruskal’s Algorithm

6.1 Introduction

Kruskal’s Algorithm finds a minimum weight spanning tree in a weighted, con-
nected, and undirected graph.

It works by first ignoring all the edges and then by progressively adding back a
minimum-weight edge which does not form a cycle until the graph is connected.

The difficult part of Kruskal’s Algorithm is the cycle-detection step. When we
pick a minimum-weight edge we need to know if adding it to the graph will form
a cycle or not.

6.2 Using a Disjoint Set Data Structure

We now discuss how Kruskal’s algorith can work in O(Eα(V)) amortized time.
This demands that we have information for the graph stored very specifically.

In the following pseudocode we assume:

• The graph has V vertices and E edges

• EL is a list of the edges in increasing order by weight.

• F is a disjoint set forest with V isolated vertices.

• F uses path compression and weighted union.

• K is an empty list.

When the code ends K will contain all the edges in the minimal spanning tree.

for each edge(u,w) in EL:

if F.findrep(u) != F.findrep(w)

K.append(edge(u,w))

F.union(u,v)

end if

end for

6.3 Time Complexity

The for loop iterates E times.

In the body of the for loop we need to calculate findrep(u) and findrep(v)

and with V vertices it takes time α(V) for each. If the if is satisfied then we
also need to do F.union(u,w) which takes time α(V).

Consequently the body of the for loop takes O(α(V)) time so the entire algo-
rithm takes O(Eα(V)) time.

10

7 Maze Generation

7.1 Introduction

Consider the problem of generating an n× n maze. Ideally a maze should have
the following properties:

• No circular routes (cycles).

• Every cell is reachable from every other square.

7.2 Using a Disjoint Set Data Structure

Suppose we begin by creating an n× n grid of cells labeled like an array, so the
cells will be (1, 1), ..., (1, n), (2, 1), ..., 2, n), ..., (n, 1), ..., (n, n).

For now let’s assume that every cell is isolated so every wall between them is
filled-in. We put these walls in a list W and shuffle it randomly. Treat it like a
queue. Note that a wall has the form {c1, c2} where c1 and c2 are the two cells
it separates.

We also create a disjoint set forest which contains one tree (a single node)
for each cell. What we will do is remove the walls between cells which will
progressively link the cells together like components of a graph.

We proceed as follows:

1. Pop a wall {c1, c2} off W .

2. If the cells c1 and c2 are not in the same tree then union their trees.

3. Continue until we have one tree.

In pseudocode this looks like:

F = Disjoint set forest with one tree for each cell.

Each tree is just that cell.

W = shuffled queue of walls

K = empty list

while F contains more than one tree:

(c1,c2) = W.dequeue

if F.findrep(c1) != F.findrep(c2)

F.union(c1,c2)

K.append((c1,c2))

end

end

When this ends the list K will contain all the walls which were removed.

Example 7.1. Let’s create a 2× 2 maze. We start with the grid:

11

(1,1) (1,2)

(2,1) (2,2)

There are 4 edges which we shuffle to get: We shuffle to get:

W = {{(1, 1), (2, 1)}, {(1, 1), (1, 2)}, {(1, 2), (2, 2)}, {(2, 1), (2, 2)}}

Our disjoint forest is:

(1, 1) (1, 2) (2, 1) (2, 2)

This represents the fact that our four cells are all disconnected.

We dequeue the wall {(1, 1), (2, 1)} and since (1, 1) and (2, 1) are not in the
same tree we union the trees. We also have K = [{(1, 1), (2, 1)}], the wall
which was removed:

(1, 1)

(2, 1)

(1, 2) (2, 2)

The maze is now:

(1,1) (1,2)

(2,1) (2,2)

We dequeue the wall {(1, 1), (1, 2)} and since (1, 1) and (1, 2) are not in the
same tree we union the trees. We also haveK = [{(1, 1), (2, 1)}, {(1, 1), (1, 2)}],
the wall which were removed:

(1, 1)

(2, 1) (1, 2)

(2, 2)

The edges that remain in W = {{(1, 2), (2, 2)}, {(2, 1), (2, 2)}} are the edges
that remain in the maze:

12

(1,1) (1,2)

(2,1) (2,2)

We dequeue the wall {(1, 2), (2, 2)} and since (1, 2) and (2, 2) are not in the
same tree we union the trees: We also haveK = [{(1, 1), (2, 1)}, {(1, 1), (1, 2)}, {(1, 2), (2, 2)}],
the walls which were removed:

(1, 1)

(2, 1) (1, 2) (2, 2)

We now have just one tree and the resulting maze is:

(1,1) (1,2)

(2,1) (2,2)

Okay it’s a pretty boring maze but it works!

7.3 Time Complexity

It takes O(n2) to set up the Disjoint Set Forest F .. In an n × n grid of cells
there will be 2n(n− 1) walls which a Fisher-Yates shuffle can shuffle in O(n2).

The while loop then iterates O(n2) times and the body of the loop is O(α(n2)).

Overall we then have time complexity O(n2α(n2)).

13

	Introduction
	Implementation
	Three Basic Operations Version 1
	Introduction
	Creating a New Subset with a New Element
	Finding Subset Representatives
	Union of Subsets
	Time Complexity

	Three Basic Operations Version 2
	Introduction
	Finding Subset Representatives Revisited
	Union of Subsets Revisited
	Time Complexity Revisted

	Simple Graph Management
	Introduction
	Representing Connected Components
	Edge Information and Addition
	Cycle Detection
	Does Adding an Edge Form a Cycle?

	Kruskal's Algorithm
	Introduction
	Using a Disjoint Set Data Structure
	Time Complexity

	Maze Generation
	Introduction
	Using a Disjoint Set Data Structure
	Time Complexity

