
CMSC 420: Extended KD Trees and Queries

Justin Wyss-Gallifent

April 18, 2023

1 Introduction . 2
2 Extended KD-Trees . 2

2.1 The Basics . 2
2.2 Insertion and Splitting . 3
2.3 Bulk Insertion and Splitting 6
2.4 Searching . 9
2.5 Deletion . 9

3 Nearest Neighbor Query . 11
3.1 Introduction . 11
3.2 Bounding Boxes . 11
3.3 Algorithm Commentary 13
3.4 Algorithm . 14

1

1 Introduction

Next on our agenda is to dig a bit deeper into extended kd-trees and to look at
nearest neighbor queries.

2 Extended KD-Trees

2.1 The Basics

The classic approach to modifying kd-trees is to use the leaves (the external
nodes) to store all the data and the internal nodes to simply be guideposts to
the data. We typically allow up to some maximum m points to be stored as a
list in each leaf and each point may have some data associated to it.

In this sense each internal node would contain two pieces of information, the
coordinate being split on and the splitting coordinate value, thus we’ll just
call them splitting nodes and each leaf contains a list of up to m points with
associated data.

Example 2.1. For example a simple extended kd-tree with k = 2 and m = 3
might look like this:

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(15, 10) : GYH

(17, 10) : AAA

(19, 40) : QEQ

(50, 30) : HUH

(15, 42) : RRR

Two important notes:

Note 2.1.1. We have not specified just yet exactly how the splitting nodes
are created. The actual answer is that the splitting nodes arise as part of the
insertion process. We will visit this next.

Note 2.1.2. Structurally speaking coordinates which are equal to splitting
coordinates could go either left or right. This is done in order to keep the
tree as balanced as possible. It is not a problem but we will comment where
necessary how this might affect our various extended kd-tree operations.

2

2.2 Insertion and Splitting

Suppose we wish to insert point into the tree. For each point we direct it to a
leaf via the splitting nodes.

Note 2.2.1. By convention when we follow the splitting nodes for insertion we
always go right on an equal coordinate. Another choice might be to go left or
to randomly go left or right but we’ll stick to right for consistency.

Once we reach the leaf node we first simply insert the point, then we ask if the
node is overfull or not. If the leaf node is not overfull then there is nothing to
do.

If the leaf node is overfull then we must split it.

Example 2.2. Here is a simple example. Suppose we insert the point
(40, 50) : Y AY into our tree from earlier. They both end up in one leaf
which is overfull since m = 3:

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(15, 10) : GYH

(17, 10) : AAA

(19, 40) : QEQ

(50, 30) : HUH

(15, 42) : RRR

(40, 50) : Y AY

We must split this overfull node.

When we split an overfull we create a parent splitting node. This parent splitting
node needs to have a splitting coordinate and a splitting value. There are two
classic ways to approach this:

1. Cycle Split : We look at the leaf’s parent and if it splits by coordinate α
then we split by coordinate α + 1 mod k. If there is no parent (the leaf
is the root) then we split by the first coordinate. For example if k = 3
(three-dimensional) then if the parent splits by x then our new split is by
y, if the parent splits by y then our new split is by z, and if the parent
splits by z then our new split is by x. If there is no parent we split by x.
This is basically how we traditionally work with kd-trees.

2. Spread Split : We pick the coordinate such that the point spread in that
coordinate’s direction is largest. For example if k = 3 and if the point
spread in the x-direction is larger than either the y- or z-direction then
we split by x. In the case of ties we pick the earliest coordinate with

3

the largest coordinate spread, so for example in the k = 3 case if the x-
spread is 3, the y-spread is 4, and the z-spread is 4 we would choose the
y-coordinate to split on.

Once we have chosen the splitting coordinate we sort the points in the leaf
according to that coordinate with ties broken by the remaining coordinates in
cycling order. We’ll call this a coordinate sort.

Example 2.3. For example suppose k = 3 and we have the set of points
which needs to be split:

(1, 2, 3), (3, 2, 1), (2, 2, 1), (2, 1, 2), (2, 1, 3), (3, 3, 3)

Suppose we are splitting by the y-coordinate. We break ties by the z-
coordinate and further ties by the x-coordinate. One way to imagine this
working is to “rotate” each point so it has the order (y, z, x), sort them in
the obvious way, then “unrotate” back.

In the above example if we rotate we get:

(y, z, x) = (2, 3, 1), (2, 1, 3), (2, 1, 2), (1, 2, 2), (1, 3, 2), (3, 3, 3)

Sort:

(y, z, x) = (1, 2, 2), (1, 3, 2), (2, 1, 2), (2, 1, 3), (2, 3, 1), (3, 3, 3)

Unrotate:

(x, y, z) = (2, 1, 2), (2, 1, 3), (2, 2, 1), (3, 2, 1), (1, 2, 3), (3, 3, 3)

Once we have sorted the n points in the leaf we split them into the first bn/2c
and the rest.

Note 2.2.2. Note that when we split the points we could get points with the
same splitting coordinate in both the left and right leaves. This will be relevant
when we search.

Finally the splitting node value is assigned to be exactly the median.

Example 2.4. Returning to our example with an overfull node:

4

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(15, 10) : GYH

(17, 10) : AAA

(19, 40) : QEQ

(50, 30) : HUH

(15, 42) : RRR

(40, 50) : Y AY

Suppose we are using a cycle split. Since the parent node splits by y our
new split will be by x.

If we coordinate sort the points by x they are in order:

(15, 42), (19, 40), (40, 50), (50, 30)

The median x-value is 29.5 and so the new splitting node will split by that
x-coordinate. The first b4/2c = 2 points go left, the other 2 go right:

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(15, 10) : GYH

(17, 10) : AAA x = 29.5

(19, 40) : QEQ

(15, 42) : RRR

(50, 30) : HUH

(40, 50) : Y AY

Note that the previous example would not change if we were using a spread split
because the spread in the x-direction is 35, which is larger than the spread in
the y-direction which is 20.

Here is an example with a spread split:

Example 2.5. Suppose we took the ending result from the above example
and inserted (7, 100) : WOW . The result is:

5

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK

(7, 100) : WOW y = 20

(15, 10) : GYH

(17, 10) : AAA x = 29.5

(19, 40) : QEQ

(15, 42) : RRR

(50, 30) : HUH

(40, 50) : Y AY

If we examine the points in the overfull node we see that the spread in the
x-direction is 3 whereas the spread in the y-direction is 94. Since the spread
in the y-direction is larger we split using the y-coordinate.

We coordinate sort the points by y-coordinate:

(6, 6), (8, 10), (5, 20), (7, 100)

The median y-value is 15 and so the new splitting node will split by that
y-coordinate. The first b4/2c = 2 points go left, the other 2 go right:

x = 10

y = 15

(6, 6) : LKK

(8, 10) : RTW

(5, 20) : ABC

(7, 100) : WOW

y = 20

(15, 10) : GYH

(17, 10) : AAA x = 29.5

(19, 40) : QEQ

(15, 42) : RRR

(50, 30) : HUH

(40, 50) : Y AY

2.3 Bulk Insertion and Splitting

It’s not uncommon to choose to bulk-insert points into an extended kd-tree. In
such a situation we first insert all the points without regard for whether the
leaf nodes are overfull or not. Once the insertion is done we then go back and
check all the leaf nodes which gained points. We split them if necessary and, if
necessary, do this recursively on the results.

6

Here is a simple example.

Example 2.6. Suppose we insert the two points (40, 50) : Y AY and (60, 70) :
OOH into our tree from earlier. They both end up in one leaf which is over-
full since m = 3:

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(15, 10) : GYH

(17, 10) : AAA

(19, 40) : QEQ

(50, 30) : HUH

(15, 42) : RRR

(40, 50) : Y AY

(60, 70) : OOH

We must split this overfull node.

Here is an example where we need to do it recursively:

Example 2.7. Let’s return to our example from the start:

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(15, 10) : GYH

(17, 10) : AAA

(19, 40) : QEQ

(50, 30) : HUH

(15, 42) : RRR

Let’s insert four new points into the tree, (30, 40) : JUS, (11, 21) : TIN ,
(50, 22) : WY S, and (35, 27) : SGA. Now we have a really overfull node:

7

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(15, 10) : GYH

(17, 10) : AAA

(19, 40) : QEQ

(50, 30) : HUH

(15, 42) : RRR

(30, 40) : JUS

(11, 21) : TIN

(50, 22) : WY S

(35, 27) : SGA

Suppose we are using cycle split. Since the parent node splits by y we must
split by x.

We coordinate sort the points by the x-coordinate:

(11, 21), (15, 42), (19, 40), (30, 40), (35, 27), (50, 22), (50, 30)

The median of the x-coordinates is 30 so our splitting node has a value of
30. The first b7/2c = 3 points go left and the remaining 4 go right. Notice
that the new right leaf is still overfull:

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(15, 10) : GYH

(17, 10) : AAA x = 30

(11, 21) : TIN

(15, 42) : RRR

(19, 40) : QEQ

(30, 40) : JUS

(35, 27) : SGA

(50, 22) : HUH

(50, 30) : WY S

We must then split again, this time by the y-coordinate.

8

We coordinate sort the points by the y-coordinate:

(50, 22), (35, 27), (50, 30), (30, 40)

The median of the y-coordinates is 28.5 so our splitting node has a value of
28.5. The points are split half and half:

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(15, 10) : GYH

(17, 10) : AAA x = 30

(11, 21) : TIN

(15, 42) : RRR

(19, 40) : QEQ y = 28.5

(50, 22) : WY S

(35, 27) : SGA

(50, 30) : HUH

(30, 40) : JUS

Now we are done.

2.4 Searching

Searching can be a bit awkward because we are not insisting that a point with
coordinate equal to a splitting coordinate value must go right. As a reminder
we do this because it guarantees a bit better balance.

As a consequence if we are searching and we arrive at a splitting node and our
search point has a coordinate equal to the splitting coordinate value we must
check both left and right.

2.5 Deletion

Deletion is particularly easy in an extended kd-tree. We simply delete the point
from its leaf. the only issue that might arise is if the leaf becomes empty. In
such a case the splitting node pointing to it becomes redundant. What we do
in such a case is that we remove the splitting node and connect the sibling of
the empty leaf directly to the parent of the splitting node.

9

Example 2.8. Returning to the above example:

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(15, 10) : GYH

(17, 10) : AAA x = 40

(19, 40) : QEQ

(15, 42) : RRR

(50, 30) : HUH

(40, 50) : Y AY

(60, 70) : OOH

If we delete just (15, 10) : GYH then we have no issues:

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK y = 20

(17, 10) : AAA x = 40

(19, 40) : QEQ

(15, 42) : RRR

(50, 30) : HUH

(40, 50) : Y AY

(60, 70) : OOH

If we also delete (17, 10) : AAA then the splitting node y = 20 becomes
irrelevant and we remove and splice:

10

x = 10

(5, 20) : ABC

(8, 10) : RTW

(6, 6) : LKK x = 40

(19, 40) : QEQ

(15, 42) : RRR

(50, 30) : HUH

(40, 50) : Y AY

(60, 70) : OOH

3 Nearest Neighbor Query

3.1 Introduction

The idea behind a nearest neighbor query is that we have a target point P which
may or may not be in the tree and we wish to find the n points in the tree which
are closest to P .

To avoid issues of square roots (and floating point calculations) we’ll calculate
and use the squares of distances rather than distances. In this discussion we’ll
refer to the d2 = ... to mean the square of the distance to our target point P .

We could do this really crudely, of course, simply by visiting every leaf, checking
every point, calculating every d2 value, and picking out the n closest. However
we’d like to do this more efficiently.

3.2 Bounding Boxes

To make our algorithm more efficient each node has an associate bounding box.
Intutively this bounding box is a k-dimensional box which is as small as possible
and still contains all the points in the subtree rooted at that node.

Example 3.1. Suppose a subtree contains the points (1, 8), (5, 3), (4, 9),
(8, 5), (3, 6), and (10, 4). The mininum and maximum x-values are 1 and 10
respectively and the minimum and maximum y-values are 3 and 9 respec-
tively. The corresponding bounding box would be the smallest box which
contains all five points, [1, 10]× [3, 9], as shown here.

11

0 2 4 6 8 10 12

0

2

4

6

8

10

12

(1, 8)

(3, 6)

(5, 3)

(4, 9)

(8, 5)

(10, 4)

There are various ways to work with bounding boxes. One typical way is
to just use the minimum and maximum for each coordinate. For the above
we would store [xmin, xmax] = [1, 10] and [ymin, ymax] = [3, 9]. This
generalizes conveniently to higher k values.

Note 3.2.1. Whether we store the bounding box information in a node or
whether we compute it on the fly is a matter of programmatical choice. Com-
puting it on the fly increases the time complexity of the query whereas storing
it requires that we update it with each point insertion or deletion.

Given a point, calculating the d2 value from a point P to a bounding box is easy.
Let’s look at the 2-d version. Suppose we have [xmin, xmax] and [ymin, ymax]
stored and P = (x, y). We calculate:

• The distance from x to the interval [xmin, xmax].

• The distance from y to the interval [ymin, ymax]

• Take the sum of the squares of these distances.

Note that if P is inside the bounding box then this will return a value of 0,
which makes sense.

If we have more than k = 2 dimensions we just calculate more distances and
sum the squares. If imin and imax are the minimum and maximum coordinates
for the bounding box in k dimensions and if Pi is the ith coordinate of the point
P then we would have:

d2 value =

k∑
i=1

dist(Pi, [imin, imax])2

Note 3.2.2. The distance from a coordinate c to an interval [cmin, cmax] is
easy: If c < cmin it’s cmin− c, if c > cmax it’s c− cmax, otherwise it’s 0.

12

Here is an example to illustrate that this method works:

Example 3.2. Consider the bounding box from earlier and consider the
three points P1 = (13, 10), P2 = (6, 1), and P3 = (8, 6). The d2 values are
shown as dashed, except for (8, 6) whith d2 = 0 since it’s inside the bounding
box.

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

(13, 10)

(6, 1)

(8, 6)

We have [xmin, xmax] = [1, 10] and [ymin, ymax] = [3, 9].

For these points we have:

1. P1 = (13, 10):

• Distance from 13 to [1, 10] is 3.

• Distance from 10 to [3, 9] is 1.

• The result is then 32 + 12 = 10.

2. P2 = (6, 1):

• Distance from 6 to [1, 10] is 0.

• Distance from 1 to [3, 9] is 2.

• The result is then 02 + 22 = 4.

3. P3 = (8, 6):

• Distance from 8 to [1, 10] is 0.

• Distance from 6 to [3, 9] is 0.

• The result is then 02 + 02 = 0.

3.3 Algorithm Commentary

Broadly speaking we’ll keep track of a working list of up to n points (which will
begin empty) and only update that list if we find closer points than the points

13

in our list or if the list is not full. We can then use this list and our bounding
boxes to do a more efficient job of searching.

To clarify this efficiency, suppose we are looking for some points closest to P
and we arrive at a splitting node. Consider these two possibilities:

• If the bounding box for one subtree is closer to P than the bounding box
for the the other subtree then the points we are looking for are more likely
to be in that subtree and so we should visit it first.

• Suppose we have our working list and it’s full, containing n points, and the
furthest point in that list has d2 value equal to, say, 10. If the bounding
box for one of the subtrees is more than d2 = 10 away from P then nothing
in that entire subtree will be closer than the points in our working list and
there’s no reason to visit that subtree.

3.4 Algorithm

This suggests the following recursive algorithm when searching for the n points
closest to a target P . Starting with an empty list of length n and starting at
the root:

1. If we are at a leaf, check all the points to see if their d2 values are smaller
than any of the points in our list and if they are, replace the further points
in our list with closer ones.

2. If we are at a splitting node and if our list is full and if the bounding box
for a subtree is further away than the furthest point in our list, ignore
that subtree. Note that this could mean ignoring both subtrees!

3. If we are at a splitting node and there are two subtrees to visit, visit the
subtree whose bounding box is closest to P first.

Note 3.4.1. There are various conventions for breaking ties, for example if we
have to choose between two points with the same d2 value. These conventions
are typically application-specific.

Example 3.3. Consider this extended kd-tree. Here I’ve suppressed any
letter-data

14

x = 10

(5, 20)

(8, 10)

(6, 6) y = 20

(15, 9)

(17, 10) x = 40

(19, 40)

(15, 42)

(50, 30)

(40, 50)

(60, 70)

Suppose we want the n = 2 closest points to (30, 40). We begin with an
empty list L = [,] of size n = 2.

We start at the root x = 10. The bounding box for the left subtree has
[xmin, xmax] = [5, 8] and [ymin, ymax] = [6, 20] and the bounding box for
the right subtree has [xmin, xmax] = [15, 60] and [ymin, ymax] = [9, 70].
The point (30, 40) is closer to the right bounding box (it’s inside that bound-
ing box!) so we explore right first.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

884

We are at y = 20. The bounding box for the left subtree has [xmin, xmax] =
[15, 17] and [ymin, ymax] = [9, 10] and the bounding box for the right sub-
tree has [xmin, xmax] = [15, 60] and [ymin, ymax] = [30, 70]. The point
(30, 40) is closer to the right bounding box (it’s inside that bounding box!)

15

so we explore right first.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

1069

We are at x = 40. The bounding box for the left subtree has [xmin, xmax] =
[15, 19] and [ymin, ymax] = [40, 42] and the bounding box for the right
subtree has [xmin, xmax] = [40, 60] and [ymin, ymax] = [30, 70]. The point
(30, 40) is closer to the right bounding box d2 = 100 vs d2 = 121 (check
this!) so we explore right first.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

121 100

In the right subtree we have (50, 30), (40, 50), and (60, 70). Since our list
is empty we put the two points closest to (30, 40) in it. Now we have
L = [(40, 50), (50, 30)]. Observe that these have d2 = 200 ane d2 = 500
respectively. These are marked blue above.

16

We back up and look at the left subtree of x = 40:

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

121 100

The bounding box for the left subtree has [xmin, xmax] = [15, 19] and
[ymin, ymax] = [40, 42] and this has d2 = 121 which is less than both 200
and 500 so it’s worth checking. We have (19, 40) and (15, 42) with d2 values
of 121 and 229. The first one is better than 500 so we throw out (50, 30)
and put (19, 40) in our list, so now L = [(40, 50), (19, 40)] with d2 = 200 and
d2 = 121 respectively. These are marked blue above.

We back up and look at the left subtree of y = 20:

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

1069

The bounding box for the left subtree has [xmin, xmax] = [15, 17] and
[ymin, ymax] = [9, 10] and this has d2 = 1069 > 200 so it’s not even worth
looking there.

17

We back up and look at the left subtree of x = 10:

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

884

The bounding box for the left subtree has [xmin, xmax] = [5, 8] and [ymin, ymax] =
[6, 20] and this has d2 = 884 > 200 so it’s not even worth looking there.

Thus we end with L = [(40, 50), (19, 40)] and those are our two closest points.

18

	Introduction
	Extended KD-Trees
	The Basics
	Insertion and Splitting
	Bulk Insertion and Splitting
	Searching
	Deletion

	Nearest Neighbor Query
	Introduction
	Bounding Boxes
	Algorithm Commentary
	Algorithm

