CMSC 420: Skip Lists

Justin Wyss-Gallifent

April 11, 2024

[Tntroductionl.
12 Ideal Skip Lists]o o oo
13 Randomized Skip Lists|. oo 0oL
4 Measurements|. o o
4.1 Important Note|.

M2 Tevels

4.3 EOTAZE] . . . e
BE__Searchl
5.1 Algorithm| 0.

5.2 Time Complexity|.

|6 Insertion Algorithm and Time Complexity|.
eletion Algorithm and Time Complexity|

1 Introduction

Skip lists were invented in 1990 by Bill Pugh, at UMD. These are a modification
of a regular sorted linked list which provides logarithmic search, insertion and
deletion, much like AVL trees. On the down side they require about twice as
much storage.

They do this by introducing an element of randomness to the sorted linked list
construction, as we’ll see.

2 Ideal Skip Lists

Suppose we have a sorted linked list with n keys. Clearly it takes O(n) time to
find, insert and delete (insertion and deletion since we must find first). Is there
a way to speed this up?

Let’s start by hypothesizing a sorted linked list with just 8 elements. Suppose
we also have a head node which is simply a pointer to the first element in the
list and a tail node which is pointed to by the last element in the list.

In the picture below ignore the 0 in the head node for now, don’t treat it as a
key in the list.

0 o3[of~{10] ef~{11] of~{30[oj|37] ej~{42] ej{50[ej|>c]

As mentioned at the start worst-case for find, insert, and delete is O(n) in this
case. But suppose we added a “fast level” of pointers. To elaborate, think of
the 0 in the head node above as level 0, the really slow level. We’ll add a fast
level of pointers at level 1 which skips every other node in level 0:

1| @

sTeH G LoH Lo e He o 2 [l H ™

Great, so what if we added an extra fast level - level 2:

oo
oo

2| ® —e
1] @ 10 ° 30| @ 49 ° 00
ool o O [oh [ebEr o 2 [eH |
And last but not least the fastest level of all - level 3:
d %)

L TeH el [eHeeH el oH |

Okay, let’s pause for a second to see why this might be useful. Suppose we are
looking for the key 37.

Sl IN|w

qloln

We start at the top pointer in level 3 and observe that it points to co. This is
too large so we drop down to level 2.

We check the pointer in level 2 and observe that it points to 30. This is below
our target of 37 so we follow the pointer to that node. We then check the next
pointer in level 2 and observe that it points to co. This is too large and so we
drop down to level 1.

We check the next pointer in level 1 and observe that it points to 42. This is
too large and so we drop down to level 0.

We check the next pointer in level 0 and observe that it points to 37. This is
our target and we’re done!

Here is an illustration:

30

qlolo

— 10 |~ 42 -1

Lo el e[S oM 2 elfso] oh
In an ideal skip list with n elements we would have level 0 which links all nodes,
level 1 which skips every other node in level 0, level 2 which skips every other

node in level 1, and so on until adding more levels adds nothing. Then we would
find our target key using a generalization of the above approach.

S|l |IN|Ww

3 Randomized Skip Lists

This is all very quaint but the truth of the matter is that once a key is inserted
or deleted the entire structure is ruined and we certainly don’t want to have to
rebuild all the pointers every time this happens.

Instead then we’ll add an element of randomness to the procedure as follows.
First we set an enforced mazimum level. We create a head node which reaches
this enforced maximum level and has no value (sometimes —oo) and we create
a tail node which also reaches this enforced maximum level and has a value of
0.

Note that in all of what follows, as with our non-randomized case, the levels are
0-indexed starting at the bottom.

1. In level 0 we will have a regular linked list, starting with the head node,
progressing through our keys, and ending with the tail node.

2. In level 1 we take each internal node which reaches level 0 (all of them)
and say that there is a p = 0.5 probability that it also reaches level 1.
We then form a linked list using these nodes, again starting with the head
node, progressing through the nodes that do extend to level 1, and ending

with the tail node.

In level 2 we take each internal node which reaches level 1 (about half of
them) and say that there is a p = 0.5 probability that it also reaches level
2. We then form a linked list using these nodes, again starting with the
head node, progressing through the nodes that do extend to level 2, and
ending with the tail node.

. In level 3 we take each internal node which reaches level 2 (about quarter

of them) and say that there is a p = 0.5 probability that it also reaches
level 3. We then form a linked list using these nodes, again starting with
the head node, progressing through the nodes that do extend to level 3,
and ending with the tail node.

We continue this until we “run out of” nodes. Note that in theory nodes
could keep being included in higher and higher levels albeit with lower and
lower probability so we stop for sure when we hit our enforced maximum
level.

A few definitions. The first is repeated.
Definition 3.0.1. We have:

e The (enforced) maximum level is the upper limit that we set on how far

each node could reach.

e The top level for the skip list is the topmost level that we actually reach.

e The top level for a given node is simply the largest level index it reaches.

The latter two are of course less than or equal to the enforced maximum level.

Example 3.1. A randomized skip list might look like the following. The
top levels of the nodes were generated by flipping a coin with an enforced
maximum level of 3 (indexed 0 to 3):

d
[

11

Ol N| W

d
hd

[&

So now if we’re looking for 37 our path will be H — 11 — 30 — 37
and our path to 80 will be a really fast H — 42 — 80.

Here’s the path for 37:

L
1

11

Ol N| W

L
1

°le
L 7

[oH10] oh

4 Measurements

4.1 Important Note

All of the analysis here is based upon having no enforced maximum level. Having
an enforced maximum level doesn’t change the O bounds.

4.2 Levels

Theorem 4.2.1. Regarding levels in a skip list with n nodes and for which
TL(n) is the top level (index).

(a) For a given L > 0, the probability that at least one node reaches level L or
beyond equals:
1 n
P:l—O—%>

(b) The expected top level of a skip list with n nodes is O(Ign).

(¢) The expected maximum number of levels in a skip list with n nodes is
O(lgn).

Proof. We have:

(a) For any level L, the probability that a single node reaches level L (and
possibly beyond) is 1/2% and so the probability that a single node does not
reach level L (or beyond) is 1 — 1/2%.

Because the nodes are independent, it follows that the probability that none
of the nodes reaches level L (or beyond) equals:

(-3)

Hence the probability that at least one node does reach level L (or beyond)

1s: L7
(1)
oL

(b) Intuitively since on average the number of nodes is half as many at each
level it makes sense that we expect a logarithmic number of levels. At some
point I'll put in a more rigorous proof.

(¢) Follows from (c).

QED

Example 4.1. Here are some consequential statistics for the case where we
have 100 nodes:

(a) The probability that at least one node reaches level L = 10 (or beyond)

equals:

100
P=1- (1 — 210) ~ 0.09308265650895886

(b) Not really specific.

Moreover it’s worth noting that even if we didn’t set an enforced maximum
level for our nodes we still have a very low probability of achieving a high
number of levels. For example with n = 100 nodes the probability of reaching
level 15 is only:

1\ 100
P=1- (1 — 215) ~ (0.0030471523581468984

This feels somewhat intuitive given that the expected top level is about 7.6.

4.3 Storage

Theorem 4.3.1. Denote by S(n) the storage needed for a skip list with n
entries. Then the expected storage is E(S(n)) = O(n).

Proof. As mentioned we are going to ignore the enforced maximum level here
but we are also going to ignore the head and tail nodes. However you are
encouraged to think about the fact that this doesn’t affect the outcome.

First off, the keys take up ©(n) space for n nodes so the real issue is how much
space the pointers take up.

For each level i = 0,1,2,... there is a 1/2¢ probability that each node reaches
level i and hence we expect n/2% pointers at level i.

Consequently the storage needed is essentially the sum:

- = 2n
3

E(S(n) =)
i=0

[\3‘3

QED
Note 4.3.1. In the computation above we are using the fact that E(z + y) =
E(z) + E(y) for expected value calculations, a basic fact from probability.
Theorem 4.3.2. The worst-case storage without an enforced maximum level

is infinite.

Proof. There is no bound on the number of pointers for any one node, let alone
all n of them! QED

5 Search

5.1 Algorithm

The search process is very easy. We start at the header node all the way on the
left, at the highest level. We follow this level across until the final node before
we overshoot our target. When we reach this node, we drop down a level and
repeat.

Essentially we are staying in the topmost level as long as possible and then
dropping down when we would miss the target.

5.2 Time Complexity
It turns out that the average case time complexity for search is O(lgn).

The analysis of this is a bit sneaky. As a precursor let’s refine our description of
the search procedure into steps. A step will consist of checking a pointer, going
right if we can (if we don’t overshoot the target) and going down one level if we
can’t.

The time complexity analysis is based on following this procedure backwards.
More specifically, starting at the target node the reverse of search works as
follows:

(i) If we can go up one level in the node, do so (one step).
(ii) If we cannot, then go left (one step).
(iii) Go back to (i) and repeat until we reach the head node.

Each of (i) and (ii) should then be thought of as a step which takes constant
time.

Theorem 5.2.1. The expected number of steps in a skip list with n nodes is

O(lgn).

Proof. Assume that the skip list has top level L. This could be because we
enforced this level or because the nodes stopped growing there. For each i let
E(S(i)) equal the expected number of steps taken in the top 7 levels of the skip
list. Let’s pretend that the skip list extends infinitely far left. This is of course
unrealistic but will suffice for now.

At any given current node we have a 0.5 probability of moving up a level,
meaning we we we go up (one step) and then we have E(S(i — 1)) more steps
because there are one fewer levels above, and we have a 0.5 probability of going
left at the same level, meaning we go left (one step) and then we have E(S(7))
more steps because there are exactly as many levels above.

This means we have:

E(S()=05(1+E(S(i—1)))4+ 051+ E(S(©)))

We can rewrite this with basic algebra to get a recurrence relation:

E(S(i)) = 0.5(1 + E(S(i — 1)) + 0.5(1 + E(S(i)))

E(S(i)) = 1+ 0.5E(S(i — 1)) + 0.5E(S(3))
0.5E(S(i)) = 1+ 0.5E(S(i — 1))

E(5(i) = B(S(i=1)) +2

Along with the fact that E(S5(0)) = 0 (in the top 0 levels there are 0 nodes) this
can be expanded via digging down to show that E(S(i)) = 2i:

Returning to our assumption that the list continues infinitely far left we now
comment that this is not of course true, and so in fact E(S(i)) < 2i.

Lastly note that we’re starting our backwards journey from level 0 and recall
that the expected number of levels is O(lgn) and since F(S(4)) is linear as a
function of i, we get our result.

QED
Theorem 5.2.2. Search is average case O(lgn) and worst-case O(n).

Proof. Assuming it takes constant time for each step and since on average we
perform O(lgn) steps, the first result follows immediately.

The second result follows from the fact that there is a probability, albeit very
low, that the skip list turns out to be a regular linked list. QED

6 Insertion Algorithm and Time Complexity

Consider the average-case time complexity of inserting a new key/node.

We first figure what the top level of this new node is using the 0.5 approach.
Since the expected height of a single node is 2 we know this process is average-

case O(1).

We then traverse the skip list to figure out where to insert the new node. This
is essentially search, and is O(lgn). More specifically we search for the key and
since we won’t find it what will happen instead is that we will end up at level
0 and overshooting the key. This will tell us where to insert the new node.

Before traversing we initialize an array A indexed by level up to the top level of
the newly inserted node. During the traverse as we visit each node we update
Ali] to store each pointer that overshoots the target at level 4, noting that we
are finding these as part of the search process.

After the traverse A will contain the pointers which miss the target which are
precisely those which need to be updated. Similarly to the analysis for search,
this process will be O(lgn).

Once we finish this we insert the node at the correct location which means we
split the appropriate pointers (appropriate for each level of the newly inserted
node) that we stored while traversing. Each split is O(1) and since the expected
length of A is O(lgn) this process is also O(lgn).

Consequently the overall time required is O(Ign).

Note that this takes a bit of tweaking if the newly created node is taller than
the head and tail nodes, but this doesn’t affect the overall time complexity.

Example 6.1. Consider this skip list from earlier:

42

o 11

LR .

30 —
o[ol [oH P ez obl [olfso] ob
Suppose we want to insert 32 into this skip list and randomization tells us
the top level should be 3. When we traverse looking for 32 we find 37 instead

(because we get to level 0 and are forced to overshoot) and the pointers that
we test and which overshoot the target are indicated here:

3
2
1
0

qlulalo
8

oo

&

3| e o
21 @ o
42 00
1| e+ 5 ° 11 30 N NNNA o
0| e rm e 37 &W

We have stored these pointers in our array A, so something like this, ab-

stractly:

A =[30 —> 37,30 —» 42,11 —» 42, H —> 42)]

Then we make space for our new node:

~

~

3| o °
2| @ [\VaVAVAVAVAVAVAVAVAVAVAVAV ®
1 @ 3 ® 11| e 30 [\VAVAVAVAVAVAVAVAV: ®
o[o P o0 b [ob™ el rnfzr] ob [o

And we insert and split up the pointers stored in the array:

11

Ol W
olofo]oe
1
°

N
L4

olols

P o] o

10

7 Deletion Algorithm and Time Complexity

Deletion is a bit sneakier but the analysis is similar.

Without going into too much detail, we search for the target node but we treat
it as if it only exists at level 0. As we are searching we record all the pointers
which point to it although the only pointer which points to it that we actually
follow is the one at level 0. The end result is that we obtain a list of pointers

which point to the node.

We then delete the node and update the pointers accordingly.

Example 7.1. In the example above if we wished to delete 32 the process
would go as follows:

1.

Record but don’t follow H — 32 on level 3.

2. Follow H — 11 on level 2.

3. Record but don’t follow 11 — 32 on level 2.
4.
5
6

Follow 11 — 30 on level 2.

. Record but don’t follow 30 — 32 on level 1.
. Record and follow 30 — 32 on level 0.
We store this:

A =[30 — 32,30 —» 32,11 —» 32, H —> 32]

Then we splice these pointers with the pointers from 32 and we are done.

11

	Introduction
	Ideal Skip Lists
	Randomized Skip Lists
	Measurements
	Important Note
	Levels
	Storage

	Search
	Algorithm
	Time Complexity

	Insertion Algorithm and Time Complexity
	Deletion Algorithm and Time Complexity

