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1 Overview

We look at trees, lots of them, because trees are not just useful but because
they form a foundation for many other data structures.

2 Types of Trees

We mention a few types of trees that we’ll see frequently.

• Binary trees are trees in which each node has at most two children.

• Complete binary trees are binary trees in which every level is full, except
possibly the lowest level, and in the lowest leval all the nodes are on the
left.

• Perfect binary trees are binary trees in which every level is full. Note that
a perfect binary tree will have 2k − 1 nodes for some k.

• Binary search trees are binary trees in which the left subtree of a node
contains only keys smaller than the node’s key and the right subtree of a
node contains only keys larger than the node’s key.

3 Tree Definitions

Definition 3.0.1. The height of a tree equals the number of generations minus
one. For example if there is only a root and its children then the height is 1,
whereas a tree with a root, its children, and its grandchildren then the height is
2. If the tree consists of just one node then the height is 0. and for consistency
an empty tree (no nodes) will have height −1. This may seem odd but it makes
many calculations cleaner.

Definition 3.0.2. The term level is not well-defined when it comes to trees.
Sometimes the levels go from the top down and start at 0 whereas sometimes
they go from the top down and start at 1. In some trees (like red-black and AA
trees) are even weirder - the levels go from the bottom up and start at 1, except
the null children of the leaves have level 0, and sometimes nodes are the same
level as their children.

Which is to say make sure you know what level means in a particular context.

4 Tree Storage

There are many ways to store trees. A few examples are:

• Using child pointers. This is perhaps the most common way to represent
a tree. For trees in which a node can have some maximum number of
children we can define each node as having that many children and use
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Null pointers to indicate when a child is missing. However for trees in
which a node can have any number of children this won’t work.

• If a node can have any number of children we could use a list, or a linked
list, with each entry pointing to a child.

• Using parent pointers. In such a case each node will have a pointer to
its parent and the root’s parent pointer will be NULL. These are used in
disjoint set data structures.

• Using a nested object, such as with JSON.

• A binary tree can be stored in a list where each node has a corresponding
index in the list. Typically the binary tree will be 1-indexed with the root
node being index 1 and the corresponding list (typically 0-indexed) will
simply not use the 0 entry.

5 Binary Tree Traversals

Suppose we want to traverse a binary tree. In CMSC351 we saw how to do this
with a breadth-first traversal and a depth-first traversal. Here are three new
ways. All of these are mostly clearly managed with recursion.

• Preorder Traversal: Visit the root, then preorder traverse TL and then
TR. Preorder traversal is useful for copying the tree since it generates the
root node first, which we needs so that we can attach any children.

• Postorder Traversal: Postorder traverse TL and then TR and then the root.
Postorder traversal if we need to delete an entire tree node-by-node, since
it deletes the children before their parent in a sensible way for cleanup.

• Inorder Traversal: Inorder traverse TL then the root then TR. We will
see that for binary search trees the inorder traversal yields the keys in
increasing order.

Example 5.1. Here is a really easy example. Consider the tree shown here:

50

40 57

We have the following:

• Preorder: 50,40,57

• Postorder: 40,57,50

• Inorder: 40,50,57

Note that this is a binary search tree (if you’re not sure what this is, that’s
fine) and the inorder traversal is in increasing order.
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Example 5.2. Consider the tree shown here:

50

40

31 45

42

57

52 60

61

We have the following. In this example we have also included BFT and DFT
with the assumption that left links are followed first.

• Preorder: 50,40,31,45,42,57,52,60,61

• Postorder: 31,42,45,40,52,61,60,57,50

• Inorder: 31,40,42,45,50,52,57,60,61

• Breadth-First Traverse: 50,40,57,31,45,52,60,42,61

• Depth-First Traverse: 50,40,31,45,42,57,52,60,61

Note that this is a binary search tree (if you’re not sure what this is, that’s
fine) and the inrder traversal is in increasing order.

6 Threaded Binary Trees

In a binary tree any missing child corresponds to a null pointer. We might
wonder if there’s a better use for this space. One way is to use the pointers in
some other way.

Example 6.1. For example, suppose we’re doing frequent inorder traversals
of this tree. Each left-child null pointer can point to that node’s inorder
predecessor and each right-child null pointer can point to that node’s inorder
successor. Call these special pointers threads. We will need to assign a flag
to all child pointers indicating whether they go to a real child or follow a
thread.

This allows for easy inorder traversal of the tree as follows. Suppose we are
at some node x and want its inorder successor.

• If x’s right-child pointer is a thread, follow it.

• If x’s right-child pointer is not a thread then we have to systematically
find the next largest key, so go to x’s right child and follow left children
as far as possible (possibly not at all).
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Likewise suppose we are at some node x and want its inorder predecessor.

• If x’s left-child pointer is a thread, follow it.

• If x’s left-child pointer is not a thread then we have to systematically
find the next smallest key, so go to x’s left child and follow right
children as far as possible (possibly not at all).

Here are the threads for the above tree:

50

40

31 45

42

57

52 60

61

Observe that the node with key 31 has no inorder predecessor because it is
the first key in the inorder traversal. Similarly the node with key 61 has no
inorder successor because it is the last key in the inorder traversal.

Note that for example 45’s inorder successor is 50 via the thread but for 50’s
inorder successor we go right to 57 and then left as far as we can to 52. This
is verified by the fact that 50 is 52’s inorder predecessor.

We could do the same thing using preorder or postorder predecessors and suc-
cessors.
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