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0.1 Introduction

The ElGamal cryptosystem is based on the fact that it is easy to raise things to powers in modular
arithmetic but difficult to take (discrete) logarithms.
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0.2 Key Creation

Bob selects a prime p, a primitive root α of p, and an integer a with 0 ≤ a ≤ p− 1. The value a is kept
private.

Bob then calculates the least nonnegative residue β ≡ αa mod p. The triple (p, α, β) is then made
public.

Observe that a ≡ indrβ mod p− 1 and this is difficult to calculate.

0.3 Encryption

Suppose Alice wants to send a plaintext block 0 ≤ P < p to Bob. She first chooses a random number
1 ≤ k ≤ p− 2. Then she encrypts via the encryption function by:

E(P ) ≡ (αk, Pβk) mod p

This produces a pair (γ, δ) which constitutes the cipertext. That is, γ ≡ αk mod p and δ = Pβk

mod p.

Typically a different k is used for each plaintext block. The primary reason for this is that then identical
plaintext blocks will have different corresponding ciphertext blocks.

0.4 Decryption

To decrypt the ciphertext block (γ, δ) we claim that;

P ≡ γp−1−aδ mod p

This works because of the following, where the negative exponent means the multiplicative inverse.

γp−1−aδ = (αk)p−1−aPβk mod p

= (αp−1)k(αa)−kβkP mod p

= (1)kβ−kβkP mod p

= P mod p

Thus we have the decription function:

E−1(γ, δ) ≡ γp−1−aδ mod p
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0.5 Encryption/Decryption Example

Bob selects p = 2539, α = 2 (this is a primitive root), and a = 42. He keeps a = 42 private. He
calculates β ≡ 242 ≡ 1305 mod 2539 and makes (p, α, β) = (2539, 2, 1305) public.

Alice wants to send him OHNO so she splits it as OH=1407 and NO=1314.

• To encrypt 1407 she chooses k = 100 and calculates:

E(1407) ≡ (2100, 1407 · 1305100) ≡ (613, 635) mod 2539

• To encrypt 1314 she chooses k = 200 and calculates:

E(1314) ≡ (2200, 1314 · 1305200) ≡ (2536, 1404) mod 2539

She sends these two pairs to Bob.

Bob receives them and decrypts via:

• To decrypt (613, 635) he does:

E−1(613, 635) ≡ 6132539−1−42635 ≡ 1407 mod 2539

• To decrypt (2536, 1404) he does:

E−1(2536, 1404) ≡ 25362539−1−421404 ≡ 1314 mod 2539
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0.6 Signatures

Let’s see how Alice can sign a message. Suppose Alice has the public key (p, α, β) and the private key
a and wishes to sign the message 0 ≤ m < p. She chooses 1 ≤ k ≤ p − 2 with gcd(k, p − 1) = 1 and
computes:

r ≡ αk mod p

s ≡ k−1(m− ra) mod p− 1

Note here that k−1 is the mod p− 1 inverse which exists because gcd(k, p− 1) = 1.

Note also the fact that Alice uses her own private a for this.

The signed message which she sends is then (m, r, s). Notice that the message m is included in plaintext.
There is nothing hidden here!

To verify that (m, r, s) came from Alice, Bob checks whether:

βrrs ≡ αm mod p

If this is true, the signature is considered valid.

First let’s check that for a valid message this will be true. Observe that ks ≡ m − ar mod p − 1 and
so m ≡ ks+ ar mod p− 1 and then:

αm ≡ αsk+ar ≡ (αa)
r (
αk

)s ≡ βrrs mod p

Second we should understand why this is hard to fake. Why is it difficult for Eve to take her own m and
construct r and s with βrrs ≡ αm mod p? Well, consider that she can certainly pick a 1 ≤ k ≤ p− 2
with gcd(k, p − 1) = 1 and since α is public she can calculate r ≡ αk mod p. At this point she needs
some s with βrrs ≡ αm mod p, but this means solving a discrete logarithm problem, and this is thought
to be hard.

0.7 Signing/Verification Example

Suppose Alice has chosen the prime p = 253679 and the primitive root α = 17. She then chooses
a = 2468 and calculates β ≡ αa ≡ 202478 mod p. Her public key is then (p, α, β) = (253679, 17, 202478)
and her private key is a = 2468.

Suppose she wishes to sign the message ZIP, which converts to 250815.

She chooses k = 12345, noting that gcd(12345, 253678) = 1, and calculate the k−1 ≡ 14035 mod 253678.
She then calculates:

r ≡ αk ≡ 1712345 ≡ 9945 mod 253679

s ≡ k−1(m− ra) ≡ 14035(250815− 9945 · 2468) ≡ 205783 mod 253678

She sends:
(m, r, s) = (250815, 9945, 205783)

Bob receives (m, r, s) = (250815, 9945, 205783) and verifies it:

βrrs ≡ 20247899459945205783 ≡ 43257 mod 253679

αm ≡ 17250815 ≡ 43257 mod 253679
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0.8 Signing Note

It is very important that Alice does not use the same k to sign two different messages. Let’s see why.
This example is taken from Trappe/Washington, I’ve just rewritten it in what I think is a more clear
form. Also there is a typo in the book.

Suppose Alice has chosen the prime p = 225119 and the primitive root α = 11. She then chooses her
secret a which we won’t give for now and she calculates β ≡ αa ≡ 18191 mod 225119. Now she signs
two messages but uses the same k, which we also won’t give for now!

• She signs m1 = 151405 with k:

r1 ≡ αk ≡ 11k ≡ 164130 mod 225119

s1 ≡ k−1(m1 − ar1) ≡ 130777 mod 225118

This yields (m1, r1, s1) = (151405, 164130, 130777).

• She signs m2 = 202315 with k:

r2 ≡ αk ≡ 11k ≡ 164130 mod 225119

s2 ≡ k−1(m2 − ar2) ≡ 164899 mod 225118

This yields (m2, r2, s2) = (202315, 164130, 130777).

Immediately Eve sees that r1 = r2 since they’re both 11k for the same k and so she knows that the k
are identical since α is a primitive root.

Eve knows that:

s1 ≡ k−1(m1 − ar1) mod p− 1

s2 ≡ k−1(m2 − ar2) mod p− 1

This is:

130777 ≡ k−1(151405− 164130a) mod 225118

164899 ≡ k−1(202315− 164130a) mod 225118

She rewrites this as:

130777k ≡ 151405− 164130a mod 225118

164899k ≡ 202315− 164130a mod 225118

Subtracting yields:
190996k ≡ 174208 mod 225118

Since gcd(190996, 225118) = 2 | 174208 there are two solutions for k which are k = 239 and k = 112798.

She checks which of these satisfies r1 ≡ αk mod p:

α239 ≡ 11239 ≡ 164130 mod 225119

α112798 ≡ 11112798 ≡ 60989 mod 225119

Since the first works, she knows k = 239.

She then writes the equation:

130777(239) ≡ 151405− 164130a mod 225118

164130a ≡ 187104 mod 225118

5



Since gcd(164130, 225118) = 2 | 187104 there are two solutions for a which are a = 28862 and a =
141421.

She checks which of these satisfes αa ≡ β mod p:

1128862 ≡ 206928 mod 225119

11141421 ≡ 18191 mod 225119

Since the second works, she knows a = 141421.
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0.9 Notes

1. To decrypt a message Eve needs to know a which as we have said involves taking the discrete
logarithm of β using the primitive root α.

2. Although r is known and arguably one could try lots of a until αa ≡ β mod p, in practice if p is
large this is impractical.

3. Because each plaintext block gets its own choice of k, identical plaintext blocks will have different
ciphertext blocks.

4. The ciphertext is twice as long as the plaintext. The advantage is that noted above.

5. As with most cryptosystems (we didn’t mention this with RSA) in practice this would be used to
share symmetric key which is then used to encrypt and decrypt the message.

6. While it’s possible to sign messages using ElGamal, the method is not quite as simple as with
RSA. With RSA Alice would simply user her own decryption key but here decryption works on
pairs (γ, δ) which emerge from (P, k) and not on single blocks of text.

7. Verifying primitive roots can take a while but since Bob’s p and α are public it doesn’t matter
how he obtains them or who knows. Heck, Alice could have given them to him. It’s the a that’s
critical.

8. Alice should definitely choose a random k each time. If she encrypts both P1 and P2 with the
same k and if Eve figures out P1 then she can figure out P2. This is because δ1 ≡ P1b

k mod p
and δ2 ≡ P2b

k mod p and since Eve knows δ1 and δ2 she can calculate:

P2 ≡ δ2(βk)−1 ≡ δ2(δ1P
−1
1 )−1 ≡ δ2δ−1

1 P1 mod p

9. It may not be clear what the relevance of r being a primitive root is. The reason we want a
primitive root is that this guarantees that there is only one 0 ≤ a ≤ p − 1 such that αa ≡ b
mod p. If α is not a primitive root then there will be more than one a, potentially many, which
makes it much easier to obtain an a which works, either by brute force or by more sophisticated
methods.

10. ElGamal does not have perfect secrecy.
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