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0.1 Introduction

A one-time pad is a key whose length is at least as long as the message being sent. There are several
ways for this to manifest in encryption but here are two:

• With a message of 1s and 0s using XOR to encrypt and decrypt.

• With a message of A through Z using addition and subtraction mod 26 to encrypt and decrypt.

The basic notion here is that since the key is at least as long as the message a given ciphertext could
be literally anything.

Example:

If the message is PEACE and the key is EFRGH then the ciphertext is TJRIL.

If the message is FIGHT and the key is OBLBS then the ciphertext is TJRIL.

The point here is that if Eve intercepts TJRIL she has no way of knowing what the message is.

0.2 Issues

There are several things of importance with one-time pads:

1. The key must be shared ahead of time and since the key is at least as long as the message, this
is a bit expensive.

2. The key should only be used once. If Eve manages to decrypt a single ciphertext to obtain the
corresponding message then she has the entire key. Moreover, it’s possible with some analysis
to figure out several messages when several messages are given and it’s known that the key was
shared.

3. The key should be as “random” as possible, meaning if there are N possible keys then the chance
of using one key should be 1/N . If this is not the case then the choice of key will influence the
ciphertext. In the example above if for some reason having a B in the key is highly unlikely then
the second option is less likely than the first option and so the ciphertext has given us some
information about the plaintext.
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0.3 Two Theorems

There are two theorems which tie one-time pads to perfect secrecy.

0.3.1 More Keys than Messages

Theorem:

If a cryptosystem has perfect secrecy then the number of possible keys must be at least as large as the
number of possible messages.

Proof:

Recall that a cryptosystem has perfect secrecy iff for all messages m and all ciphertexts c we have:

P (M = m |C = c) = P (M = m)

Let K be the set of possible keys and M be the set of possible messages. Suppose |M | > |K|. Let c be a
ciphertext. For all k ∈ K let Dk(c) be the result of applying decryption with key k to c. Each of these
is a message but since there are more possible messages than possible keys we must miss some message
m0. Thus we have P (M = m0 |C = c) = 0. However we also know P (M = m0) 6= 0 since there’s a
chance of choosing that message. Thus since these are not equal, we don’t have perfect secrecy.

0.3.2 The One-Time Pad has Pefect Secrecy

Probability Lemma 1:

If an event A equals the union of disjoint events A1 and A2 then P (A) = P (A1) + P (A2) and this
expands to an arbitrary finite number of disjoint events.

Probability Lemma 2:

The conditional probability P (A|B) satisfies:

P (A|B) =
P (A ∩B)

P (B)
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Theorem:

The one-time pad does yield perfect secrecy.

Proof:

We claim that for all messages m and all ciphertexts c we have:

P (M = m |C = c) = P (M = m)

Let’s look at the bitwise case because it’s easier to write down.

Suppose there are N possible keys each with probability 1/N . For a fixed m0 we have, for any ciphertext
c and key k:

c is the corresponding ciphertext iff c = k ⊕m0

It follows that given the message m0 the probability of c being the ciphertext equals the probability of
k being the key, which is 1/N . Thus each ciphertext has equal probability 1/N as well and so:

P (C = c |M = m0) =
1

N

Since this is true for all m0 we can say that for all m and for all c we have:

P (C = c |M = m) =
1

N

Now then, for a given ciphertext c first note that the event C = c is made up of the disjoint events
C = c ∩ M = m taken over all possible m. In other words:

Event(C = c) = Event(C = c ∩ M = m1) ∪̇Event(C = c ∩ M = m2) ∪̇ ...

It follow that:

P (C = c) =
∑
i

P (C = c ∩ M = mi)

=
∑
i

P (C = c |M = m)P (M = mi)

=
∑
i

(
1

N

)
P (M = mi)

=
1

N

∑
i

P (M = mi)

=
1

N
(1) =

1

N

From here we have:
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P (M = m |C = c) =
P (M = m ∩ C = c)

P (C = c)

=
P (C = c ∩ M = m)

P (C = c)

=
P (C = c |M = m)P (M = m)

P (C = c)

=
(1/N)P (M = m)

1/N

= P (M = m)
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