$p-1$ Factorization Method

Justin Wyss-Gallifent

February 27, 2022

0.1	What it Does	. .
0.2	How it Works .	1
0.3	Why it Works .	1
0.4	Notes .	1
0.5	Examples .	2

0.1 What it Does

Finds a factor of a number n.

0.2 How it Works

Suppose we wish to factor n. We follow these steps:

1. Choose a base a and a large B. Generally a is fairly small.
2. Compute $b \equiv a^{B!} \bmod n$ progressively. Note that $a^{B!}$ itself can be very large so it's best not to calculate it directly. Instead we note that:

$$
a^{B!}=\left(\left(\left(a^{1}\right)^{2}\right)^{3} \ldots\right)^{B}
$$

So we progressively raise to powers and mod as we go.
3. Let $d=\operatorname{gcd}(b-1, n)$ and hope we get a factor.

0.3 Why it Works

If n has a prime factor p such that $p-1$ has only "small" prime factors then chances are that $(p-1) \mid B$! because $B!=(B)(B-1) \ldots(3)(2)(1)$ and so chances are that all the factors of $p-1$ appear within factors of $B!$.

If this is the case then $B!=k(p-1)$ for $k \in \mathbb{Z}$ and then:

$$
b \equiv a^{B!} \equiv\left(a^{p-1}\right)^{k} \equiv 1^{k} \equiv 1 \quad \bmod p
$$

Note that since a is fairly small we probably have $a<p-1$ and hence $p \nmid a$ and Fermat's Little Theorem applies.
From here we get $p \mid(b-1)$ and since $p \mid n$ we have $\operatorname{gcd}(b-1, p) \neq 1$.

0.4 Notes

Choosing a larger B will result in a higher probability of picking up all factors of $p-1$ but it will be more computationally intensive.

0.5 Examples

Using the following un-optimized Python code:
Here is my code:

```
import sys
import math
n = int(sys.argv[1])
a = int(sys.argv[2])
B = int(sys.argv[3])
# Calculate b = a^(B!) mod n
b = a
p = 1
while p <= B:
    b = pow(b,p,n)
    p = p + 1
g = math.gcd(b-1,n)
print(b)
print(g)
```

These results were produced almost instantly:
$n=569482811$ with $a=2$ and $B=1000$ ends with $b=288830325$ and $\operatorname{gcd}(288830325-$ $1,569482811)=1439$.
$n=22122361361$ with $a=2$ and $B=10000$ ends with $b=7654936140$ and $\operatorname{gcd}(7654936140-$ $1,22122361361)=111317$. Here $n=22122361361$ is the product of two six-digit primes.
$n=16461679220973794359$ with $a=2$ and $B=1000000$ ends with $b=175964042692823278$ and $\operatorname{gcd}(175964042692823278-116461679220973794359)=2860486313$. Here $n=16461679220973794359$ is the product of two ten-digit primes.

