Transpose of a Linear Transformation

Justin Wyss-Gallifent

March 7, 2022

0.1	Introduction	1
0.2	Preliminaries	1
0.3	Definition of the Transpose	2
0.4	Null, Rank, and Range of the Transpose	3
0.5	Transformation, Transpose, and Matrices	4

0.1 Introduction

These notes were just written to help me organize all the fiddly details.

0.2 Preliminaries

There are two things to recall:

N1: For a linear transformation $T: V \to \dots$ we have:

 $\dim V = \dim \left(\operatorname{range} T \right) + \dim \left(\operatorname{null} T \right)$

N2: For a subspace W of a vector space V we have:

 $\dim (V) = \dim (W) + \dim (W^0)$

0.3 Definition of the Transpose

For a linear transformation $T: V \to W$ we can define a linear transform $T^t: W^* \to V^*$ called the *transpose* such that for $f \in W^*$ we define $T^t f \in V^*$ by $T^t f(\alpha) = f(T(\alpha))$.

Theorem:

The transformation T^t is linear.

Proof:

We claim that:

$$T^t(f+cg) = T^tf + cT^tg$$

These linear transformations are determined what they to do some $\alpha \in V$ and so observe that first:

$$T^{t}(f + cg)(\alpha) = (f + cg)(T\alpha) = f(T\alpha) + cg(T\alpha)$$

And second:

$$(T^t f + cT^t g)(\alpha) = T^t f(\alpha) + cT^t g(\alpha) = f(T\alpha) + cg(T\alpha)$$

0.4 Null, Rank, and Range of the Transpose

Theorem:

For a linear transformation $T: V \to W$ we have:

- 1. null $(T^t) = (\operatorname{range} T)^0$
- 2. dim (range (T^t)) = dim (range T)
- 3. range $(T^t) = (\operatorname{null} T)^0$

Proof:

For (a) note that:

$$f \in \operatorname{null}(T^t) \Longleftrightarrow T^t f = 0 \text{ (in } V^*) \Longleftrightarrow \forall \alpha \in V, T^t f(\alpha) = 0 \Longleftrightarrow \forall \alpha \in V, f(T\alpha) = 0 \Longleftrightarrow f \in (\operatorname{range} T)^0$$

For (b) note the following. Since $T^t: W^* \to V^*$ we have Fact I from N1:

$$\dim (W^*) = \dim (\operatorname{null} (T^t)) + \dim (\operatorname{range} (T^t))$$

Since range T is a subspace of W we have Fact II from N2:

 $\dim(W) = \dim(\operatorname{range} T) + \dim((\operatorname{range} T)^0)$

Now then, Fact I tells us:

$$\dim (\operatorname{range} (T^t)) = \dim (W^*) - \dim (\operatorname{null} (T^t))$$

Since dim (W^*) = dim (W) and using (a) we get:

$$\dim (\operatorname{range} (T^t)) = \dim (W) - \dim ((\operatorname{range} T)^0)$$

Now, Fact II tells us:

$$\dim\left(\operatorname{range}\left(T^{t}\right)\right) = \dim\left(\operatorname{range}T\right)$$

For (c) we first show that range $(T^t) \subseteq (\operatorname{null} T)^0$ and then we show that the dimensions are the same.

Suppose $g \in \text{range}(T^t)$ so $\exists f \in W^*$ with $T^t f = g$. We claim that $g \in (\text{null } T)^0$, meaning we need to show that $g(\alpha) = 0$ for all $\alpha \in \text{null } T$. Let $\alpha \in \text{null } T$ so then $g(\alpha) = T^t f(\alpha) = f(T(\alpha)) = f(0) = 0$. Since $T: V \to W$ we have Fact III from N1:

 $\dim V = \dim \left(\operatorname{null} T \right) + \dim \left(\operatorname{range} T \right)$

Since null T is a subspace of V we have Fact IV from N2:

$$\dim V = \dim \left(\operatorname{null} T \right) + \dim \left(\left(\operatorname{null} T \right)^0 \right)$$

Now then, observe that we have the following where the first equality is from (b), the second from Fact III, and the third from Fact IV:

$$\dim (\operatorname{range}(T^t)) = \dim (\operatorname{range} T)$$
$$= \dim V - \dim (\operatorname{null} T)$$
$$= \dim ((\operatorname{null} T)^0)$$

0.5 Transformation, Transpose, and Matrices

Theorem:

Suppose $T: V \to W$ is a linear transformation and T^t is its transpose. Suppose $A = \{\alpha_1, ..., \alpha_n\}$ and $B = \{\beta_1, ..., \beta_m\}$ are bases for V and W respectively and $A' = \{f_1, ..., f_n\}$ and $B' = \{g_1, ..., g_n\}$ are their dual bases for V^* and W^* respectively.

Then the matrices $[T]_{B\leftarrow A}$ and $[T^t]_{A'\leftarrow B'}$ are matrix transposes of one another.

Proof:

To simplify let's denote these matrices by [T] and $[T^t]$ respectively. By the definition and construction of these matrices, observe that for any $1 \le i \le n$ we have:

$$T\alpha_i = \sum_{k=1}^m \left[T\right]_{ki} \beta_k$$

And for any $1 \leq j \leq m$ we have:

$$T^t g_j = \sum_{k=1}^n \left[T^t \right]_{kj} f_k$$

Using the first of these, for any g_j and any α_i we have:

$$T^{t}g_{j}(\alpha_{i}) = g_{j}(T\alpha_{i})$$
$$= g_{j}\left(\sum_{k=1}^{m} [T]_{ki} \beta_{k}\right)$$
$$= \sum_{k=1}^{m} [T]_{ki} g_{j}(\beta_{k})$$
$$= [T]_{ji}$$

Using the second of these, for any g_j and any α_i we have:

$$T^{t}g_{j}(\alpha_{i}) = \sum_{k=1}^{n} \left[T^{t}\right]_{kj} f_{k}(\alpha_{i})$$
$$= \left[T^{t}\right]_{ij}$$

Thus for any j and any i we have $[T]_{ji} = [T^t]_{ij}$ and we are done.