Transpose of a Linear Transformation

Justin Wyss-Gallifent

March 7, 2022
0.1 Introduction. 1
0.2 Preliminaries . 1
0.3 Definition of the Transpose . 2
0.4 Null, Rank, and Range of the Transpose . 3
0.5 Transformation, Transpose, and Matrices . 4

0.1 Introduction

These notes were just written to help me organize all the fiddly details.

0.2 Preliminaries

There are two things to recall:
N 1 : For a linear transformation $T: V \rightarrow \ldots$ we have:

$$
\operatorname{dim} V=\operatorname{dim}(\text { range } T)+\operatorname{dim}(\text { null } T)
$$

N2: For a subspace W of a vector space V we have:

$$
\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}\left(W^{0}\right)
$$

0.3 Definition of the Transpose

For a linear transformation $T: V \rightarrow W$ we can define a linear transform $T^{t}: W^{*} \rightarrow V^{*}$ called the transpose such that for $f \in W^{*}$ we define $T^{t} f \in V^{*}$ by $T^{t} f(\alpha)=f(T(\alpha))$.

Theorem:

The transformation T^{t} is linear.

Proof:

We claim that:

$$
T^{t}(f+c g)=T^{t} f+c T^{t} g
$$

These linear transformations are determined what they to do some $\alpha \in V$ and so observe that first:

$$
T^{t}(f+c g)(\alpha)=(f+c g)(T \alpha)=f(T \alpha)+c g(T \alpha)
$$

And second:

$$
\left(T^{t} f+c T^{t} g\right)(\alpha)=T^{t} f(\alpha)+c T^{t} g(\alpha)=f(T \alpha)+c g(T \alpha)
$$

0.4 Null, Rank, and Range of the Transpose

Theorem:

For a linear transformation $T: V \rightarrow W$ we have:

1. $\operatorname{null}\left(T^{t}\right)=(\text { range } T)^{0}$
2. $\operatorname{dim}\left(\operatorname{range}\left(T^{t}\right)\right)=\operatorname{dim}(\operatorname{range} T)$
3. range $\left(T^{t}\right)=(\text { null } T)^{0}$

Proof:

For (a) note that:
$f \in \operatorname{null}\left(T^{t}\right) \Longleftrightarrow T^{t} f=0\left(\right.$ in $\left.V^{*}\right) \Longleftrightarrow \forall \alpha \in V, T^{t} f(\alpha)=0 \Longleftrightarrow \forall \alpha \in V, f(T \alpha)=0 \Longleftrightarrow f \in(\text { range } T)^{0}$

For (b) note the following. Since $T^{t}: W^{*} \rightarrow V^{*}$ we have Fact I from N1:

$$
\operatorname{dim}\left(W^{*}\right)=\operatorname{dim}\left(\operatorname{null}\left(T^{t}\right)\right)+\operatorname{dim}\left(\operatorname{range}\left(T^{t}\right)\right)
$$

Since range T is a subspace of W we have Fact II from N2:

$$
\operatorname{dim}(W)=\operatorname{dim}(\text { range } T)+\operatorname{dim}\left((\text { range } T)^{0}\right)
$$

Now then, Fact I tells us:

$$
\operatorname{dim}\left(\operatorname{range}\left(T^{t}\right)\right)=\operatorname{dim}\left(W^{*}\right)-\operatorname{dim}\left(\operatorname{null}\left(T^{t}\right)\right)
$$

Since $\operatorname{dim}\left(W^{*}\right)=\operatorname{dim}(W)$ and using (a) we get:

$$
\operatorname{dim}\left(\operatorname{range}\left(T^{t}\right)\right)=\operatorname{dim}(W)-\operatorname{dim}\left((\operatorname{range} T)^{0}\right)
$$

Now, Fact II tells us:

$$
\operatorname{dim}\left(\operatorname{range}\left(T^{t}\right)\right)=\operatorname{dim}(\operatorname{range} T)
$$

For (c) we first show that range $\left(T^{t}\right) \subseteq(\text { null } T)^{0}$ and then we show that the dimensions are the same.
Suppose $g \in \operatorname{range}\left(T^{t}\right)$ so $\exists f \in W^{*}$ with $T^{t} f=g$. We claim that $g \in(\text { null } T)^{0}$, meaning we need to show that $g(\alpha)=0$ for all $\alpha \in \operatorname{null} T$. Let $\alpha \in \operatorname{null} T$ so then $g(\alpha)=T^{t} f(\alpha)=f(T(\alpha))=f(0)=0$.
Since $T: V \rightarrow W$ we have Fact III from N1:

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{null} T)+\operatorname{dim}(\operatorname{range} T)
$$

Since null T is a subspace of V we have Fact IV from N2:

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{null} T)+\operatorname{dim}\left((\operatorname{null} T)^{0}\right)
$$

Now then, observe that we have the following where the first equality is from (b), the second from Fact III, and the third from Fact IV:

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{range}\left(T^{t}\right)\right) & =\operatorname{dim}(\operatorname{range} T) \\
& =\operatorname{dim} V-\operatorname{dim}(\operatorname{null} T) \\
& =\operatorname{dim}\left((\operatorname{null} T)^{0}\right)
\end{aligned}
$$

0.5 Transformation, Transpose, and Matrices

Theorem:

Suppose $T: V \rightarrow W$ is a linear transformation and T^{t} is its transpose. Suppose $A=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $B=\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ are bases for V and W respectively and $A^{\prime}=\left\{f_{1}, \ldots, f_{n}\right\}$ and $B^{\prime}=\left\{g_{1}, \ldots, g_{n}\right\}$ are their dual bases for V^{*} and W^{*} respectively.

Then the matrices $[T]_{B \leftarrow A}$ and $\left[T^{t}\right]_{A^{\prime} \leftarrow B^{\prime}}$ are matrix transposes of one another.

Proof:

To simplify let's denote these matrices by $[T]$ and $\left[T^{t}\right]$ respectively. By the definition and construction of these matrices, observe that for any $1 \leq i \leq n$ we have:

$$
T \alpha_{i}=\sum_{k=1}^{m}[T]_{k i} \beta_{k}
$$

And for any $1 \leq j \leq m$ we have:

$$
T^{t} g_{j}=\sum_{k=1}^{n}\left[T^{t}\right]_{k j} f_{k}
$$

Using the first of these, for any g_{j} and any α_{i} we have:

$$
\begin{aligned}
T^{t} g_{j}\left(\alpha_{i}\right) & =g_{j}\left(T \alpha_{i}\right) \\
& =g_{j}\left(\sum_{k=1}^{m}[T]_{k i} \beta_{k}\right) \\
& =\sum_{k=1}^{m}[T]_{k i} g_{j}\left(\beta_{k}\right) \\
& =[T]_{j i}
\end{aligned}
$$

Using the second of these, for any g_{j} and any α_{i} we have:

$$
\begin{aligned}
T^{t} g_{j}\left(\alpha_{i}\right) & =\sum_{k=1}^{n}\left[T^{t}\right]_{k j} f_{k}\left(\alpha_{i}\right) \\
& =\left[T^{t}\right]_{i j}
\end{aligned}
$$

Thus for any j and any i we have $[T]_{j i}=\left[T^{t}\right]_{i j}$ and we are done.

