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0.1 Introduction

These notes were just written to help me organize all the fiddly details.

0.2 Preliminaries

There are two things to recall:

N1: For a linear transformation T : V → ... we have:

dimV = dim (rangeT ) + dim (nullT )

N2: For a subspace W of a vector space V we have:

dim (V ) = dim (W ) + dim (W 0)
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0.3 Definition of the Transpose

For a linear transformation T : V → W we can define a linear transform T t : W ∗ → V ∗ called the
transpose such that for f ∈W ∗ we define T tf ∈ V ∗ by T tf(α) = f(T (α)).

Theorem:

The transformation T t is linear.

Proof:

We claim that:
T t(f + cg) = T tf + cT tg

These linear transformations are determined what they to do some α ∈ V and so observe that first:

T t(f + cg)(α) = (f + cg)(Tα) = f(Tα) + cg(Tα)

And second:
(T tf + cT tg)(α) = T tf(α) + cT tg(α) = f(Tα) + cg(Tα)
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0.4 Null, Rank, and Range of the Transpose

Theorem:

For a linear transformation T : V →W we have:

1. null (T t) = (rangeT )0

2. dim (range (T t)) = dim (rangeT )

3. range (T t) = (nullT )0

Proof:

For (a) note that:

f ∈ null (T t)⇐⇒ T tf = 0 (in V ∗)⇐⇒ ∀α ∈ V, T tf(α) = 0⇐⇒ ∀α ∈ V, f(Tα) = 0⇐⇒ f ∈ (rangeT )0

For (b) note the following. Since T t : W ∗ → V ∗ we have Fact I from N1:

dim (W ∗) = dim (null (T t)) + dim (range (T t))

Since rangeT is a subspace of W we have Fact II from N2:

dim (W ) = dim (rangeT ) + dim ((rangeT )0)

Now then, Fact I tells us:

dim (range (T t)) = dim (W ∗)− dim (null (T t))

Since dim (W ∗) = dim (W ) and using (a) we get:

dim (range (T t)) = dim (W )− dim ((rangeT )0)

Now, Fact II tells us:
dim (range (T t)) = dim (rangeT )

For (c) we first show that range (T t) ⊆ (nullT )0 and then we show that the dimensions are the same.

Suppose g ∈ range (T t) so ∃f ∈ W ∗ with T tf = g. We claim that g ∈ (nullT )0, meaning we need to
show that g(α) = 0 for all α ∈ nullT . Let α ∈ nullT so then g(α) = T tf(α) = f(T (α)) = f(0) = 0.

Since T : V →W we have Fact III from N1:

dimV = dim (nullT ) + dim (rangeT )

Since nullT is a subspace of V we have Fact IV from N2:

dimV = dim (nullT ) + dim ((nullT )0)

Now then, observe that we have the following where the first equality is from (b), the second from Fact
III, and the third from Fact IV:

dim (range(T t)) = dim (rangeT )

= dimV − dim (nullT )

= dim ((nullT )0)
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0.5 Transformation, Transpose, and Matrices

Theorem:

Suppose T : V → W is a linear transformation and T t is its transpose. Suppose A = {α1, ..., αn} and
B = {β1, ..., βm} are bases for V and W respectively and A′ = {f1, ..., fn} and B′ = {g1, ..., gn} are
their dual bases for V ∗ and W ∗ respectively.

Then the matrices [T ]B←A and [T t]A′←B′ are matrix transposes of one another.

Proof:

To simplify let’s denote these matrices by [T ] and [T t] respectively. By the definition and construction
of these matrices, observe that for any 1 ≤ i ≤ n we have:

Tαi =

m∑
k=1

[T ]ki βk

And for any 1 ≤ j ≤ m we have:

T tgj =

n∑
k=1

[
T t
]
kj
fk

Using the first of these, for any gj and any αi we have:

T tgj(αi) = gj(Tαi)

= gj

(
m∑

k=1

[T ]ki βk

)

=

m∑
k=1

[T ]ki gj(βk)

= [T ]ji

Using the second of these, for any gj and any αi we have:

T tgj(αi) =

n∑
k=1

[
T t
]
kj
fk(αi)

=
[
T t
]
ij

Thus for any j and any i we have [T ]ji = [T t]ij and we are done.
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