## MATH 115 Section 2.5 Quadratic Functions

1. Intro: Now that we know how to apply various transformations to a function we'd like to do this to one of the most useful functions in mathematics, the quadratic function.
2. Definition: A quadratic function is a function of the form $f(x)=a x^{2}+b x+c$ with $a \neq 0$.

Example: $f(x)=2 x^{2}-8 x-6$.
Note that if we complete the square on our example we find out that $f(x)=2(x-2)^{2}-14$. Why is this useful? We can see that $f(x)$ is obtained from $x^{2}$ by stretching by 2 , shifting right 2 and then shifting down 14 . This tells us the vertex is at $(2,-14)$.
3. Furthermore: In general we can always complete the square to rewrite $f(x)=a(x-h)^{2}+k$. This is called the standard form (the original one is sometimes called the general form). A quadratic function in standard form has the following:

- Vertex $(h, k)$.
- Axis of symmetry $x=h$.
- Opens up if $a>0$, in which case when $x=h$ then $f$ has a minimum of $k$.
- Opens down if $a<0$, in which case when $x=h$ then $f$ has a maximum of $k$.

Example: $f(x)=-3(x+1)^{2}+7$ has vertex $(-1,7)$ and opens down. Therefore $f$ has a maximum value of 7 when $x=-1$. Sketch it.
Example: Consider the function shown below. What could it be?


We know $(h, k)=(3,8)$ but we don't know $a$, though we do know $a>0$. Thus we can only say $f(x)=a(x-3)^{2}+8$ with $a>0$.
Example: Sketch the graph of $f(x)=-3(x-2)^{2}+6$. Find and label the vertex, axis of symmetry and all the intercepts.
4. Lazy: Suppose then you're given $f(x)=x^{2}-x-2$ and you don't want to complete the square. Is there a short-cut to finding the vertex? If the only thing you need is the vertex then maybe there's a nice way of picking it out. The answer is "yes".
A quadratic function in standard form $f(x)=a x^{2}+b x+c$ has the following:

- The $x$-coordinate of the vertex is $x=-\frac{b}{2 a}$.
- The $y$-coordinate of the vertex is $y=f\left(-\frac{b}{2 a}\right)$.
- Axis of symmetry $x=-\frac{b}{2 a}$.
- Opens up if $a>0$, in which case when $x=h$ then $f$ has a minimum of $k$.
- Opens down if $a<0$, in which case when $x=h$ then $f$ has a maximum of $k$.

Example: Let $f(x)=2 x^{2}+6 x+10$. Where is the vertex? Does it open up or down? Does it have a minimum or a maximum? What is it and where does it occur? Graph this function, including all intercepts.
5. Application: Quadratic functions are very useful. Here is a simple application.

Example: Suppose a ball is thrown with an initial velocity directly upwards of 96 feet per second and an initial height of 4 feet. Physics tells us that after $t$ seconds its height will be $h(t)=-16 t^{2}+96 t+4$ feet. What does the vertex tell us?
Answer: The vertex is located at $t=-\frac{96}{2(-16)}=3$ and $h(3)=-16(3)^{2}+96(3)+4=148$. Since $a=-16<0$ we know that when $t=3$ the function $h(t)$ achieves a maximum value of 148. In our application this means that after 3 seconds the ball is highest at 148 feet up.

