MATH 115 Sections 4.3 Lecture Notes

1. Introduction: Just as exponentials have properties (like $x^{2} x^{3}=x^{5}$ and $\frac{2^{x}}{2^{y}}=2^{x-y}$, logarithms also have useful properties. We'd like to list the four useful properties and see what they're good for.
2. Three Properties: We will focus on three main properties first.
(a) Product Rule: $\log _{a}(M N)=\log _{a} M+\log _{a} N$
(b) Quotient Rule: $\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N$
(c) Power Rule: $\log _{a} M^{P}=P \log _{a} M$

There are a number of ways to implement these. Some of these will appear more useful to you right now than others, but all will be useful in time.

Example: Evaluate $\log 5+\log 20$.
Solution: Neither is particularly nice but $\log 5+\log 20=\log (5 \cdot 20)=\log 100=2$. Note we used the product rule in reverse here.

Example: Compress $\log 13+\frac{1}{2} \log 5-\log 7$ to the logarithm of a single number.
Solution: $\log 13+\frac{1}{2} \log 5-\log 7=\log 13+\log 5^{1 / 2}-\log 7=\log (13 \sqrt{5})-\log 7=\log \left(\frac{15 \sqrt{5}}{7}\right)$.

Example: Break down and simplify $\log _{2}\left(\frac{3}{8}\right)$ as much as possible.
Solution: We can do $\log _{2}\left(\frac{5}{8}\right)=\log _{2}(5)-\log _{2}(8)=\log _{2}(3)-3$. This may seem useless but if you knew somehow that $\log _{2}(3) \approx 1.58$ then you'd know that $\log _{2}\left(\frac{3}{8}\right) \approx 1.58-3=-1.42$.

Example: Expand the logarithmic expression $\log _{3}\left(\frac{x}{5}\right)$.
Solution: We see $\log _{3}\left(\frac{x}{5}\right)=\log _{3} x-\log _{3} 5$. Note that WebAssign usually tells you that in your answer you should replace $r=\log _{3} x$ and $s=\log _{3} 5$ so the answer would be $r-s$ here .

Example: Using $r=\log _{2} x$ and $s=\log _{2} y$, rewrite $\log _{2}(8 x y)^{8}$ in terms of r and s.
Solution: $\log _{2}(8 x y)^{8}=8 \log _{2}(8 x y)=8\left(\log _{2} 8+\log _{2} x+\log _{2} y\right)=8(3+r+x)$.

Example: Using $r=\ln a, s=\ln b$ and $t=\ln c$, rewrite $\ln \left(\frac{a^{9}}{b^{3} \sqrt{c}}\right)$ in terms of r, s and t.
Solution: $\ln \left(\frac{a^{9}}{b^{3} \sqrt{c}}\right)=\ln \left(a^{9}\right)-\ln \left(b^{3} c^{1 / 2}\right)=9 \ln a-\left(\ln b^{3}+\ln c^{1 / 2}\right)=9 \ln a-\left(3 \ln b+\frac{1}{2} \ln c\right)=$ $9 r-\left(3 s+\frac{1}{2} c\right)$.
3. Fourth Property: A fourth property is very useful when you need to find something like $\log _{2}(3)$ on your calculator. Your calculator only has \ln and \log. (In truth there is probably a $\log _{x} y$ buried in a menu somwhere.)
(d) Change of Base: $\log _{a} b=\frac{\log _{c} b}{\log _{c} a}$ for any c you like.

Example: Suppose I want to know $\log _{2} 3$.
Solution: This rule tells me that $\log _{2} 3=\frac{\log _{5} 3}{\log _{5} 2}=\frac{\log _{3} 3}{\log _{3} 2}=\frac{\log _{8} 3}{\log _{8} 2}=\frac{\log 3}{\log 2}=\frac{\ln 3}{\ln 2}=\ldots$ for any base we like. Of course the last two are the most useful since we can do them on the calculator. Your choice, it does not matter. $\log _{2} 3=\frac{\ln 3}{\ln 2} \approx 1.584962501$.

Example: This also gives us a really sneaky way to evaluate things like $\log _{8} 4$, where we know they're both powers of 2 but doing it in our heads gives us a headache.
Solution: $\log _{8} 4=\frac{\log _{2} 4}{\log _{2} 8}=\frac{2}{3}$.

Example: How about $\log _{1 / 9} 3$?
Solution: $\log _{1 / 9} 3=\frac{\log _{3} 3}{\log _{3} \frac{1}{9}}=\frac{1}{-2}=-\frac{1}{2}$.

