MATH 115 Sections 5.1a

Introduction

1. Introduction: The proper definitions of the trigonometric functions are based on the unit circle and some associated definitions, so we'll examine that first.
2. The Unit Circle: The unit circle (henceforth abbreviated UC) is the circle of radius 1 centered at the origin. Note that its equation is $x^{2}+y^{2}=1$.

Example: Is the point $(0.2,0.8)$ on the unit circle? Since $(0.2)^{2}+(0.8)^{2} \neq 1$, we know it's not.

Example: Find all x so that $\left(x, \frac{\sqrt{2}}{2}\right)$ is on the unit circle. Suppose the point is in the fourth quadrant. Then what?
3. Terminal Points: Suppose t is a number. Imagine you are at $(1,0)$ on the UC and you walk counterclockwise if $t>0$ and clockwise if $t<0$. You go a distance of $|t|$ as measured along the UC itself. Where are you? Clearly this depends upon t. The point you end up at is called the terminal point for t.

Example: Find the terminal point for $t=\pi$. Note that the UC has circumference 2π (because it's $2 \pi r$) and so a trip all the way around is distance 2π. A distance of π is then a trip halfway around:

We end up at $(-1,0)$ and so the terminal point for $t=\pi$ is $(-1,0)$.

Example: Find the terminal points for $t=-\frac{\pi}{2}$. Since $t<0$ we go clockwise by $\frac{\pi}{2}$. This is a fourth of the way around (a fourth of 2π).

We end up at $(0,-1)$ and so the terminal point for $t=-\frac{\pi}{2}$ is $(0,-1)$.

It's not always obvious where the terminal point is. For example, where is the terminal point for $t=3$? Since 3 is slightly less than π and since the terminal point for π is halfway around, the terminal point for 3 should be slightly less. It's right about here:

But where is it? Looks like, approximately, $(-0.9,0.2)$ or so. This is just an approximation.

There are several terminal points we need to know on sight. One is the terminal point for $\frac{\pi}{4}$. Note that this is located here:

So where is this? Well, notice that by symmetry $x=y$ and since the point is on the UC $x^{2}+y^{2}=1$. Thus $x^{2}+x^{2}=1$ and so $x= \pm \frac{\sqrt{2}}{2}$. Since it's in the first quadrant it's $x=\frac{\sqrt{2}}{2}$ and then $y=\frac{\sqrt{2}}{2}$ also. Therefore the terminal point for $t=\frac{\pi}{4}$ is $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
A similar argument can show us that the terminal point for $t=\frac{\pi}{6}$ is $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ and the terminal point for $t=\frac{\pi}{3}$ is $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.
In summary for now on the UC we have the following five very important points:

