MATH 115 Sections 5.3a Lecture Notes

1. Introduction: This section addresses both the graphs of sine and cosine. Today we'll do sine. Cosine is very close and can be done quickly once sine is known.
2. A Note on Sine as a Function: Up until now we've been thinking of $\sin (t)$ as a function of t. In this context we thought of it as the y-value of the terminal point of t. But functions are traditionally given as functions of x. Thus we'll start writing $\sin (x)$ and try to get away from the connection to the unit circle even though the definition is in the background. In other words $\sin (x)$ is the y-value of the terminal point of x.
3. The Graph of Sine: Before plotting any points, note that the terminal point for $x+2 \pi$ is the same as the terminal point for x. This means that $\sin (x+2 \pi)=\sin (x)$. What this means is that sine repeats every 2π. Formally we say that sine is periodic with period 2π. To graph the function then we only need to sketch it between $x=0$ and $x=2 \pi$ and then it repeats over and over.
Given this fact we can create a list of points for the graph of $\sin (x)$ by plugging in various values for x. We won't list all the x here, just enough to draw the graph:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{11 \pi}{6}$	2π
$\sin (x)$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0

Now if we plot these as points on a graph we get the following:

If we fill these in with a curve and repeat it over and over we get the following picture. For future reference I have boxed in a single period of the graph:

4. Amplitude and Reflection Variations: Consider the function $f(x)=-2 \sin (x)$. We know from our study of transformations that the 2 stretches the graph vertically by a factor of 2 and the - reflects it in the x-axis. We will draw just a single period of this:

Again note that I've drawn in the box containing a single period. This will be useful later. In general the graph of $f(x)=a \sin (x)$ could involve a reflection and a stretch or shrink.
Definition: The value $|a|$ is the amplitude of the function.
5. Phase Shift: Consider the function $f(x)=\sin \left(x-\frac{\pi}{4}\right)$. We know that this is a shift to the right by $\frac{\pi}{4}$. Here is the graph of a single period:

In general the graph of $f(x)=\sin (x-b)$ repositions the start of the period at $x=b$.
Definition: The value of b is the phase shift of the function.
6. Period Variations: We never spent any time on horizontal stretching but we need it here. Here is an example to help us in general. Consider $f(x)=\sin (2 x)$. The 2 has the effect of shrinking horizontally by a factor of 2 . The period was 2π and now it's $\frac{2 \pi}{2}=\pi$. Thus the graph is:

In general the period of $f(x)=\sin (k x)$ is $\frac{2 \pi}{k}$.
7. All Together: Putting it all together we look at the function $f(x)=a \sin k(x-b)$. We have:

$$
\begin{aligned}
& \text { Amplitude }=|a| \\
& \text { Phase shift }=\text { Start of period }=b \\
& \text { Period }=\frac{2 \pi}{k}
\end{aligned}
$$

In order to draw the graph, it's very helpful to first simply draw a box which fits the criteria above and then jam a single period of sine inside it, flipped if necessary.

Example: Sketch $f(x)=3 \sin \left(\frac{1}{2} x+\frac{\pi}{12}\right)$.
First rewrite this in the correct form as: $f(x)=3 \sin \frac{1}{2}\left(x-\left(-\frac{\pi}{6}\right)\right)$.
And then note that we have:
Amplitude $=|3|=3$ with no flip.
Phase shift $=$ start of period $=-\frac{\pi}{6}$.
Period $=\frac{2 \pi}{\frac{1}{2}}=4 \pi$.
Thus our one-period box looks like:

and filled in with a period:

