MATH 115 Sections 5.3a Lecture Notes

- 1. **Introduction:** This section addresses both the graphs of sine and cosine. Today we'll do sine. Cosine is very close and can be done quickly once sine is known.
- 2. A Note on Sine as a Function: Up until now we've been thinking of $\sin(t)$ as a function of t. In this context we thought of it as the y-value of the terminal point of t. But functions are traditionally given as functions of x. Thus we'll start writing $\sin(x)$ and try to get away from the connection to the unit circle even though the definition is in the background. In other words $\sin(x)$ is the y-value of the terminal point of x.
- 3. The Graph of Sine: Before plotting any points, note that the terminal point for $x + 2\pi$ is the same as the terminal point for x. This means that $\sin(x + 2\pi) = \sin(x)$. What this means is that sine repeats every 2π . Formally we say that sine is *periodic with period* 2π . To graph the function then we only need to sketch it between x = 0 and $x = 2\pi$ and then it repeats over and over.

Given this fact we can create a list of points for the graph of sin(x) by plugging in various values for x. We won't list all the x here, just enough to draw the graph:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	0

Now if we plot these as points on a graph we get the following:

If we fill these in with a curve and repeat it over and over we get the following picture. For future reference I have boxed in a single *period* of the graph:

4. Amplitude and Reflection Variations: Consider the function $f(x) = -2\sin(x)$. We know from our study of transformations that the 2 stretches the graph vertically by a factor of 2 and the – reflects it in the x-axis. We will draw just a single period of this:

Again note that I've drawn in the box containing a single period. This will be useful later. In general the graph of $f(x) = a \sin(x)$ could involve a reflection and a stretch or shrink. Definition: The value |a| is the *amplitude* of the function.

5. Phase Shift: Consider the function $f(x) = \sin\left(x - \frac{\pi}{4}\right)$. We know that this is a shift to the right by $\frac{\pi}{4}$. Here is the graph of a single period:

In general the graph of $f(x) = \sin(x - b)$ repositions the start of the period at x = b. Definition: The value of b is the *phase shift* of the function.

6. **Period Variations:** We never spent any time on horizontal stretching but we need it here. Here is an example to help us in general. Consider $f(x) = \sin(2x)$. The 2 has the effect of shrinking horizontally by a factor of 2. The period was 2π and now it's $\frac{2\pi}{2} = \pi$. Thus the graph is:

In general the *period* of $f(x) = \sin(kx)$ is $\frac{2\pi}{k}$.

7. All Together: Putting it all together we look at the function $f(x) = a \sin k (x - b)$. We have:

Amplitude = |a|Phase shift = Start of period = bPeriod = $\frac{2\pi}{k}$

In order to draw the graph, it's very helpful to first simply draw a box which fits the criteria above and then jam a single period of sine inside it, flipped if necessary.

Example: Sketch $f(x) = 3\sin\left(\frac{1}{2}x + \frac{\pi}{12}\right)$. First rewrite this in the correct form as: $f(x) = 3\sin\frac{1}{2}\left(x - \left(-\frac{\pi}{6}\right)\right)$. And then note that we have:

Amplitude=|3| = 3 with no flip. Phase shift = start of period = $-\frac{\pi}{6}$. Period = $\frac{2\pi}{\frac{1}{2}} = 4\pi$.

Thus our one-period box looks like:

and filled in with a period:

