1. Introduction: Now we'd like to finish up by looking at the SAS and SSS cases. Both of these cases use the law of cosines.
2. Law of Cosines: Suppose we have a triangle with sides a, b, c and angles A, B, C, where the angles are opposite their corresponding sides.
Then the Law of Cosines says all of the following:

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Note that in truth these all essentially the same thing just with the variables switched around.
3. SAS Case, Application: Suppose you need to measure the distance from point A to point B as shown in order to run some wire over the house. To do so you use the additional point C and measure the distances and angle shown. Find the distance from A to B.

4. SSS Case: The SSS case with the Law of Cosines is a bit like the SSA case for the Law of Sines. There may in this case be one or no solutions only though. We may also need the $\cos ^{-1}$ button on our calculator.

Example: Suppose $a=5, b=6$ and $c=7$. Find A.
The Law of Cosines states that $c^{2}=a^{2}+b^{2}-2 b c \cos A$ so then $49=25+36-2(5)(6) \cos A$ so then $\cos A=\frac{1}{5}$. Using our calculator we find that $A \approx 78.46^{\circ}$.
Note that this is the only angle that works. Technically speaking the angle $360-76.48$ does too but this is not allowed in a triangle. In general in this situation if an angle works then it is the only one.

Example: Suppose $a=2, b=3$ and $c=7$. Find B.
It's worth noting here that common sense dictates that it's not possible for one side of a triangle to be longer than the sum of the other two sides, but if we didn't think of this then the Law of Cosines would tell us that $9=4+49-2(2)(7) \cos B$ and so $\cos B=\frac{11}{7}$, which is impossible. There is no such triangle.
5. A Combination: If you have time, here is a problem based off an old final exam problem which uses practically everything we know about trigonometry.
Suppose you wish to measure the distance between two points A and B on an island but you can't actually get to the island. Instead you mark out additional points C, D and E.

Suppose you then measure all of the following. Note that all of these can be measured without going to the island.
(a) Angle $C=70^{\circ}$.
(b) Angle $E=60^{\circ}$.
(c) Angle $\angle A D B=18^{\circ}$.
(d) Angle $\angle B D E=55^{\circ}$.
(e) Distance from C to D is 8 yards.
(f) Distance from D to E is 20 yards.

There may be other ways to do this but my plan was:
(a) Find distance $A D$ using right triangle trig.
(b) Find distance $B D$ using the Law of Sines.
(c) Find distance $A B$ using the Law of Cosines.

