1. **Introduction:** Now we’d like to finish up by looking at the SAS and SSS cases. Both of these cases use the law of cosines.

2. **Law of Cosines:** Suppose we have a triangle with sides \(a, b, c \) and angles \(A, B, C \), where the angles are opposite their corresponding sides.

 Then the Law of Cosines says all of the following:

 \[
 c^2 = a^2 + b^2 - 2ab \cos C
 \]
 \[
 b^2 = a^2 + c^2 - 2ac \cos B
 \]
 \[
 a^2 = b^2 + c^2 - 2bc \cos A
 \]

 Note that in truth these all essentially the same thing just with the variables switched around.

3. **SAS Case, Application:** Suppose you need to measure the distance from point \(A \) to point \(B \) as shown in order to run some wire over the house. To do so you use the additional point \(C \) and measure the distances and angle shown. Find the distance from \(A \) to \(B \).

 ![Diagram showing points A, B, and C, with distances and angles labeled.]

 4. **SSS Case:** The SSS case with the Law of Cosines is a bit like the SSA case for the Law of Sines. There may in this case be one or no solutions only though. We may also need the \(\cos^{-1} \) button on our calculator.

 Example: Suppose \(a = 5, b = 6 \) and \(c = 7 \). Find \(A \).

 The Law of Cosines states that \(c^2 = a^2 + b^2 - 2bc \cos A \) so then \(49 = 25 + 36 - 2(5)(6) \cos A \) so then \(\cos A = \frac{1}{5} \). Using our calculator we find that \(A \approx 78.46^\circ \).

 Note that this is the only angle that works. Technically speaking the angle \(360 - 76.48 \) does too but this is not allowed in a triangle. In general in this situation if an angle works then it is the only one.

 Example: Suppose \(a = 2, b = 3 \) and \(c = 7 \). Find \(B \).

 It’s worth noting here that common sense dictates that it’s not possible for one side of a triangle to be longer than the sum of the other two sides, but if we didn’t think of this then the Law of Cosines would tell us that \(9 = 4 + 49 - 2(2)(7) \cos B \) and so \(\cos B = \frac{11}{7} \), which is impossible. There is no such triangle.
5. **A Combination:** If you have time, here is a problem based off an old final exam problem which uses practically everything we know about trigonometry.

Suppose you wish to measure the distance between two points A and B on an island but you can’t actually get to the island. Instead you mark out additional points C, D and E.

![Diagram of points A, B, C, D, E with measurements](image)

Suppose you then measure all of the following. Note that all of these can be measured without going to the island.

(a) Angle $C = 70^\circ$.
(b) Angle $E = 60^\circ$.
(c) Angle $\angle ADB = 18^\circ$.
(d) Angle $\angle BDE = 55^\circ$.
(e) Distance from C to D is 8 yards.
(f) Distance from D to E is 20 yards.

There may be other ways to do this but my plan was:

(a) Find distance AD using right triangle trig.
(b) Find distance BD using the Law of Sines.
(c) Find distance AB using the Law of Cosines.