MATH 115 Section 7.5 Lecture Notes

1. Definition: Trigonometric functions are often used to model real-world situations. For example, sine functions model the motion of springs and pendulums and of electromagnetic waves.
For this reason it is often necessary to solve a trigonometric equation. A trigonometric equation is an equation in which the desired variable is inside one or more trig functions.

Examples: $\sin x=\frac{1}{2}, \sin x+\cos x=0.4, \sin x \cos x-\cos x=0, \sin (2 x)-\sin x=1$
2. Stumbling Through an Example: Let's first look at a very basic trig equation:

Example: $\sin x=\frac{1}{2}$.

When we see this we immediately know that a possibility is $x=\frac{\pi}{6}$. But since sine repeats every 2π, we could have $x=\frac{\pi}{6}+2 \pi, x=\frac{\pi}{6}+4 \pi, x=\frac{\pi}{6}+6 \pi$, and so on, or $x=\frac{\pi}{6}-2 \pi$ and so on. To encapsulate these all in one expression, we write $x=\frac{\pi}{6}+2 \pi k$, where k is any integer. But wait, there's more! We could also have $x=\frac{5 \pi}{6}$ and logically therefore $x=\frac{5 \pi}{6}+2 \pi k$.

Where y-value $=\sin x=\frac{1}{2}$

In summary:
Solutions in $[0,2 \pi): x=\frac{\pi}{6}, \frac{5 \pi}{6}$.
Solutions overall: $x=\frac{\pi}{6}+2 \pi k, \frac{5 \pi}{6}+2 \pi k$.
3. General Approach with Sine and Cosine: For a simple equation involving a single sine or cosine on one side, first find the solutions in the interval $[0,2 \pi)$. There might be 2,1 or 0 solutions. Then add $2 \pi k$ to each.

Example: Solve $\cos x=\frac{\sqrt{2}}{2}$. We know that $x=\frac{\pi}{4}$ and $x=\frac{7 \pi}{4}$ work, so then in total we have $x=\frac{\pi}{4}+2 \pi k$ and $x=\frac{4 \pi}{4}+2 \pi k$ where k could be any integer.

Where x-value $=\cos x=\frac{\sqrt{2}}{2}$
In summary:
Solutions in $[0,2 \pi): x=\frac{\pi}{4}, \frac{7 \pi}{4}$.
Solutions overall: $x=\frac{\pi}{4}+2 \pi k, \frac{7 \pi}{4}+2 \pi k$.

Example: Solve $\sin x=-1$. We know $x=\frac{3 \pi}{2}$ works, so then in total we have $x=\frac{3 \pi}{2}+2 \pi k$ where k could be any integer.

Where y-value $=\sin x=-1$

In summary:
Solution in $[0,2 \pi): x=\frac{3 \pi}{2}$.
Solutions overall: $x=\frac{3 \pi}{2}+2 \pi k$.

Example: Solve $\cos x=3$. No value of x works because cosine is the x-value and this is always between -1 and 1.
In summary:
Solution in $[0,2 \pi)$: None.
Solutions overall: None.
4. General Approach with Tangent: For a simple equation involving tangent, things are different. Since tangent repeats every π units, first find the solution in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and then add πk where k is any integer.
IMPORTANT: Sometimes we also want to know which solutions are in $[0,2 \pi)$ so we'll list those too.

Example: Solve $\tan x=\frac{1}{\sqrt{3}}$. We know $x=\frac{\pi}{6}$ works, so then $x=\frac{\pi}{6}+\pi k$ gets them all.
In summary:
Solution in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]: x=\frac{\pi}{6}$.
Solutions in $[0,2 \pi): x=\frac{\pi}{6}, \frac{7 \pi}{6}$.
Solutions overall: $x=\frac{\pi}{6}+\pi k$.
5. General Approach with Anything Else: For a simple equation involving any of cotangent, secant or cosecant, it's best if we can first convert to sine, cosine or tangent. This doesn't always work smoothly though; we take care of the exceptions as they arise.

Example: Solve $\sec x=2$. First observe that $\cos x=\frac{1}{2}$ and so $x=\frac{\pi}{3}$ and $x=\frac{5 \pi}{3}$ work, so then $x=\frac{\pi}{3}+2 \pi k$ and $x=\frac{5 \pi}{3}+2 \pi k$.
In summary:
Solutions in $[0,2 \pi): x=\frac{\pi}{3}, \frac{5 \pi}{3}$.
Solutions overall: $x=\frac{\pi}{3}+2 \pi k, \frac{5 \pi}{3}+2 \pi k$.

Example: Solve $\cot x=0$. If we convert to tangent we get $\tan x=\frac{1}{0}=$ undefined. This occurs at $x=\frac{\pi}{2}$ (where tangent has an asymptote), so then $x=\frac{\pi}{2}+\pi k$ gets them all.
In summary:
Solution in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]: x=\frac{\pi}{2}$.
Solutions in $[0,2 \pi): x=\frac{\pi}{2}, \frac{3 \pi}{2}$.
Solutions overall $x=\frac{\pi}{2}+\pi k$.
6. Final Type: If the equation involves more than one trig expression then we may need to do some basic algebra first. Generally this means factoring and setting things equal to 0 . Sometimes it involves rewriting the equation using a trig identity first. Here are some examples:

Example: Solve $\sin x \cos x=0$.
We must have $\sin x=0$ or $\cos x=0$. These can then be solved independently like before.

Example: Solve $\cos x-\sin ^{2} x=1$.
Here we change $\sin ^{2} x$ to $1-\cos ^{2} x$, cancel the 1 s and factor.

Example: Solve $2 \sqrt{3}-\sqrt{3} \sin x+4 \cos x-2 \sin x \cos x=0$.
Here we must factor.

Example: Solve $3+\tan ^{2} x=0$.

Example: Solve $\sin (2 x)=\cos x$.
Here the best move is to use the double-angle formula for sine to rewrite this as $2 \sin x \cos x=$ $\cos x$. At this point the students often make the mistake of cancelling $\cos x$ but this loses solutions. Instead, emphasize that they should move everything to one side and factor.
7. Note: When doing the problems above, make sure you clearly summarize which solutions are in $[0,2 \pi)$ and make sure you list them in increasing order. This is how WebAssign demands them and so it's best if you do it this way.

