Math 241 Fall 2014 Final Exam Solutions

1. Given the line \mathcal{L} with symmetric equation $x=\frac{y-1}{3}=\frac{z}{2}$, the plane with equation \mathcal{P} given by $9 x-2 y-z=0$ and the point $\mathcal{Q}=(1,-2,5)$:
(a) Determine whether the line \mathcal{L} is parallel to the plane \mathcal{P}.

Solution:

The direction vector for \mathcal{L} is $\bar{L}=1 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$.
The normal vector for \mathcal{P} is $\bar{N}=9 \mathbf{i}-2 \mathbf{j}-1 \mathbf{k}$.
We check $\bar{L} \cdot \bar{N}=(1)(9)+(3)(-2)+(2)(-1)=1 \neq 0$ so the line is not parallel to the plane.
(b) Find the distance from the point \mathcal{Q} to the line \mathcal{L}. Simplify.

Solution:

Pick a point on the line: $\mathcal{R}=(0,1,0)$.
Then

$$
\overline{\mathcal{R Q}}=1 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}
$$

and so

$$
\operatorname{dist}=\frac{\|\overline{\mathcal{R} \mathcal{Q}} \times \bar{L}\|}{\|\bar{L}\|}=\frac{\|-21 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}\|}{\|1 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|}=\frac{\sqrt{(-21)^{2}+3^{2}+6^{2}}}{\sqrt{1^{2}+3^{2}+2^{2}}}
$$

2. Let the position of an object in motion be given by $\bar{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j}+e^{t} \mathbf{k}$.
(a) Find the velocity and acceleration of the object at any t.

Solution:

We calculate

$$
\bar{r}^{\prime}(t)=\left(e^{t} \cos t-e^{t} \sin t\right) \mathbf{i}+\left(e^{t} \sin t+e^{t} \cos t\right) \mathbf{j}+e^{t} \mathbf{k}
$$

and

$$
\begin{gathered}
\bar{r}^{\prime \prime}(t)=\left(e^{t} \cos t-e^{t} \sin t-e^{t} \sin t-e^{t} \cos t\right) \mathbf{i}+\left(e^{t} \sin t+e^{t} \cos t+e^{t} \cos t-e^{t} \sin t\right) \mathbf{j}+e^{t} k \\
=-2 e^{t} \sin t \mathbf{i}+2 e^{t} \cos t \mathbf{j}+e^{t} \mathbf{k}
\end{gathered}
$$

(b) Write down the integral for the distance traveled by the object between $t=0$ and $t=2$ but do not evaluate.

Solution:

We have

$$
\left\|r^{\prime}(t)\right\|=\sqrt{\left(e^{t} \cos t-e^{t} \sin t\right)^{2}+\left(e^{t} \sin t+e^{t} \cos t\right)^{2}+\left(e^{t}\right)^{2}}
$$

so that the length is

$$
\int_{0}^{2} \sqrt{\left(e^{t} \cos t-e^{t} \sin t\right)^{2}+\left(e^{t} \sin t+e^{t} \cos t\right)^{2}+\left(e^{t}\right)^{2}} d t
$$

(c) Compute the curvature of the object's path at $t=0$.

Solution:

We have

$$
\bar{r}^{\prime}(0)=1 \mathbf{i}+1 \mathbf{j}+1 \mathbf{k}
$$

and

$$
\bar{r}^{\prime \prime}(0)=0 \mathbf{i}+2 \mathbf{j}+1 \mathbf{k}
$$

so that

$$
\kappa=\frac{\|(1 \mathbf{i}+1 \mathbf{j}+1 \mathbf{k}) \times(0 \mathbf{i}+2 \mathbf{j}+1 \mathbf{k})\|}{\|1 \mathbf{i}+1 \mathbf{j}+1 \mathbf{k}\|^{3}}=\frac{\|-1 \mathbf{i}-1 \mathbf{j}+2 \mathbf{k}\|}{\|1 \mathbf{i}+1 \mathbf{j}+1 \mathbf{k}\|^{3}}=\frac{\sqrt{6}}{3^{3 / 2}}
$$

3. Use the method of Lagrange Multipliers to determine the maximum and minimum values of the function $f(x, y)=x y$ subject to the constraint $4 x^{2}+y^{2}=4$. You may assume that the maximum and minimum exist.

Solution:

We assign $g(x, y)=4 x^{2}+y^{2}$ and then we set up the system:

$$
\begin{align*}
y & =\lambda(8 x) \tag{1}\\
x & =\lambda(2 y) \tag{2}\\
4 x^{2}+y^{2} & =4 \tag{3}
\end{align*}
$$

Equation (1) tells us that $\lambda=\frac{y}{8 x}$ unless $x=0$ (but $x=0$ would give us $y=0$ in (1) and this contradicts (3)).
Equation (2) tells us that $\lambda=\frac{x}{2 y}$ unless $y=0$ (but $y=0$ would give us $x=0$ in (1) and this contradicts (3)).
Thus $\frac{y}{8 x}=\frac{x}{2 y}$ and so $2 y^{2}=8 x^{2}$ or $y^{2}=4 x^{2}$.
Plugging this into (3) yields $8 x^{2}=4$ so $x= \pm \sqrt{1 / 2}$.
If $x=\sqrt{1 / 2}$ then (3) tells us $x= \pm \sqrt{2}$ and the same for the other x.
Thus we have four points: $(-\sqrt{1 / 2},-\sqrt{2}),(-\sqrt{1 / 2},+\sqrt{2}),(+\sqrt{1 / 2},-\sqrt{2})$, and $(+\sqrt{1 / 2},+\sqrt{2})$
Next:

$$
\begin{aligned}
& f(-\sqrt{1 / 2},-\sqrt{2})=1 \\
& f(-\sqrt{1 / 2},+\sqrt{2})=-1 \\
& f(+\sqrt{1 / 2},-\sqrt{2})=-1 \\
& f(+\sqrt{1 / 2},+\sqrt{2})=1
\end{aligned}
$$

Thus the minimum is -1 and the maximum is 1 .
4. (a) Let $D(x, y)=300-2 x^{2}-3 y^{2}$ denote the depth of a lake in feet. If a boat is at $(3,5)$, in what direction should the boat travel for the depth of the water to increase most rapidly and what would that rate of increase be?

Solution:

We have

$$
\nabla D(x, y)=-4 x \mathbf{i}-6 y \mathbf{j}
$$

and so the direction would be

$$
\nabla D(3,5)=-12 \mathbf{i}-30 \mathbf{j}
$$

and the rate of increase would be

$$
\|\nabla D(3,5)\|=\sqrt{(-12)^{2}+(-30)^{2}}
$$

(b) Ohm's Law states that $I=\frac{V}{R}$ which relates current (I) with voltage (V) and resistance (R). Suppose the voltage is decreasing at 5 volts/second while the resistance is decreasing at 2 ohms/second. Find the rate of change of the current with respect to time when the voltage is 80 volts and the resistance is 40 ohms.

Solution:

The chain rule tells us that

$$
\begin{aligned}
\frac{d I}{d t} & =\frac{\partial I}{\partial V} \frac{\partial V}{\partial t}+\frac{\partial I}{\partial R} \frac{\partial R}{\partial t} \\
& =\frac{1}{R}(-5)-\frac{V}{R^{2}}(-2) \\
& =\frac{1}{40}(-5)-\frac{80}{40^{2}}(-2)
\end{aligned}
$$

5. Let R be the region in the $x y$-plane above the graph of $y=x^{2}$ and below the graph of $y=$ $-(x-1)^{2}+1$. Let D be the solid above R and below the plane $x+y+z=5$.
(a) Separately sketch reasonable pictures of both R and D.

Solution:

(b) Set up an iterated double integral for the volume of D. Do not evaluate.

Solution:

If we parametrize R as vertically simple then we get

$$
\int_{0}^{1} \int_{x^{2}}^{-(x-1)^{2}+1} 5-x-y d y d x
$$

6. Let R be the parallelogram in the $x y$-plane formed by the lines $x+y=1, x+y=2,2 y-x=2$ and $2 y-x=0$.
(a) Sketch R.

Solution:

(b) Use a change of variables to evaluate $\iint_{R} x+y d A$. Make sure to draw the new region in the $u v$-plane. This integral must be evaluated!

Solution:

We substitute $u=x+y$ and $v=2 y-x=-x+2 y$. This gives us the new region S bounded by the lines $u=1,2$ and $v=0,2$:

Then we solve to get $x=\frac{2}{3} u-\frac{1}{3} v$ and $y=\frac{1}{3} u+\frac{1}{3} v$ so that

$$
J=\left|\begin{array}{cc}
2 / 3 & -1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right|=1 / 3
$$

Alternately without solving for x and y :

$$
J=1 \div\left|\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right|=1 / 3
$$

Then

$$
\begin{aligned}
\iint_{R} x+y d A & =\iint_{S} u|1 / 3| d A \\
& =\int_{1}^{2} \int_{0}^{2} \frac{1}{3} u d v d u \\
& =\left.\int_{1}^{2} \frac{1}{3} u v\right|_{0} ^{2} d u \\
& =\int_{1}^{2} \frac{2}{3} u d u=\left.\frac{1}{3} u^{2}\right|_{1} ^{2}=\frac{1}{3}(4)-\frac{1}{3}(1)
\end{aligned}
$$

7. Let C be the edge of the part of the plane $2 x+2 y+z=10$ in the first octant, oriented counterclockwise when viewed from above.
(a) Apply Stokes' Theorem to the integral $\int_{C} 2 y d x+x d y+x z d z$ to get a surface integral over a surface Σ. Describe Σ, including its induced orientation. Either words or a picture suffice.

Solution:

We have

$$
\int_{C} 2 y d x+x d y+x z d z=\iint_{\Sigma}[(0-0) \mathbf{i}-(z-0) \mathbf{j}+(1-2) \mathbf{k}] \cdot \bar{n} d S
$$

where Σ is the portion of the plane $2 x+2 y+z=10$ in the first octant, oriented up and out.
(b) Parametrize Σ and convert your answer to (a) to an iterated double integral.

Solution:

Parametrize Σ as: $\bar{r}(x, y)=x \mathbf{i}+y \mathbf{j}+(10-2 x-2 y) \mathbf{k}$ where $0 \leq x \leq 5$ and $0 \leq y \leq 5-x$.
Then

$$
\begin{aligned}
\bar{r}_{x} & =1 \mathbf{i}+0 \mathbf{j}-2 \mathbf{k} \\
\bar{r}_{y} & =0 \mathbf{i}+1 \mathbf{j}-2 \mathbf{k} \\
\bar{r}_{x} \times \bar{r}_{y} & =2 \mathbf{i}+2 \mathbf{j}+1 \mathbf{k}
\end{aligned}
$$

these vectors match the orientation for Σ and so

$$
\begin{gathered}
\iint_{\Sigma}[(0-0) \mathbf{i}-(z-0) \mathbf{j}+(1-2) \mathbf{k}] \cdot \bar{n} d S \\
=+\iint_{R}[0 \mathbf{i}-(10-2 x-2 y) \mathbf{j}-1 \mathbf{k}] \cdot[2 \mathbf{i}+2 \mathbf{j}+1 \mathbf{k}] d A \\
=\int_{0}^{5} \int_{0}^{5-x} 4 x+4 y-21 d y d y
\end{gathered}
$$

(c) Evaluate.

Solution:

$$
\begin{aligned}
\int_{0}^{5} \int_{0}^{5-x} 4 x+4 y-21 d y d x & =\int_{0}^{5} 4 x y+2 y^{2}-\left.21 y\right|_{0} ^{5-x} d x \\
& =\int_{0}^{5} 4 x(5-x)+2(5-x)^{2}-21(5-x) d x \\
& =\int_{0}^{5} 20 x-4 x^{2}+2 x^{2}-20 x+50-105+21 x d x \\
& =\int_{0}^{5}-2 x^{2}+21 x-55 d x \\
& =-\frac{2}{3} x^{3}+\frac{21}{2} x^{2}-\left.55 x\right|_{0} ^{5}=-\frac{2}{3}(5)^{3}+\frac{21}{2}(5)^{2}-55(5)
\end{aligned}
$$

8. (a) Let C be the part of the graph of the function $y=x^{2}$ from $x=1$ to $x=2$. Write down the iterated single integral corresponding to $\int_{C} x-y d s$. Do not evaluate.

Solution:

We parametrize as $\bar{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}$ for $1 \leq t \leq 2$.
Then $\bar{r}^{\prime}(t)=1 \mathbf{i}+2 t \mathbf{j}$ and $\left\|\bar{r}^{\prime}(t)=\sqrt{5}\right\|$.
Thus

$$
\int_{C} x-y d s=\int_{1}^{2}\left(t-t^{2}\right) \sqrt{5} d t
$$

(b) Let D be the solid inside the cone with spherical equation $\phi=\frac{\pi}{6}$ and below the plane $z=3$. Let Σ be the surface of D oriented inwards. Apply the Divergence Theorem to the surface integral $\iint_{\Sigma}\left(x \mathbf{i}+x z \mathbf{j}+z^{2} \mathbf{k}\right) \cdot \bar{n} d S$ and then use a spherical parametrization to obtain a triple iterated integral. Do not evaluate.

Solution:

By the Divergence Theorem (and due to orientation)

$$
\iint_{\Sigma}\left(x \mathbf{i}+x z \mathbf{j}+z^{2} \mathbf{k}\right) \cdot \bar{n} d S=-\iiint_{D} 1+0+2 z d V
$$

where V is the solid inside the cone and below the plane.
Then the plane in spherical is $\rho=3 / \cos \phi=3 \sec \phi$ and so we get

$$
=-\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{3 \sec \phi}(2 \rho \cos \phi+1) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

