Math 241 Fall 2014 Final Exam Solutions

1. Given the line L with symmetric equation $x = \frac{y - 1}{3} = \frac{z}{2}$, the plane with equation P given by $9x - 2y - z = 0$ and the point $Q = (1, -2, 5)$:

 (a) Determine whether the line L is parallel to the plane P. [10 pts]

 Solution:

 The direction vector for L is $\vec{L} = 1\hat{i} + 3\hat{j} + 2\hat{k}$.
 The normal vector for P is $\vec{N} = 9\hat{i} - 2\hat{j} - 1\hat{k}$.

 We check $\vec{L} \cdot \vec{N} = (1)(9) + (3)(-2) + (2)(-1) = 1 \neq 0$ so the line is not parallel to the plane.

 (b) Find the distance from the point Q to the line L. Simplify. [15 pts]

 Solution:

 Pick a point on the line: $R = (0, 1, 0)$.

 Then

 $\overrightarrow{RQ} = 1\hat{i} - 3\hat{j} + 5\hat{k}$

 and so

 $\text{dist} = \frac{||\overrightarrow{RQ} \times \vec{L}||}{||\vec{L}||} = \frac{||-21\hat{i} + 3\hat{j} + 6\hat{k}||}{||1\hat{i} + 3\hat{j} + 2\hat{k}||} = \frac{\sqrt{(-21)^2 + 3^2 + 6^2}}{\sqrt{1^2 + 3^2 + 2^2}}$
2. Let the position of an object in motion be given by $\vec{r}(t) = e^t \cos t \mathbf{i} + e^t \sin t \mathbf{j} + e^t \mathbf{k}$.

(a) Find the velocity and acceleration of the object at any t. \[10 \text{ pts}\]

Solution:

We calculate

$$\vec{r}'(t) = (e^t \cos t - e^t \sin t) \mathbf{i} + (e^t \sin t + e^t \cos t) \mathbf{j} + e^t \mathbf{k}$$

and

$$\vec{r}''(t) = (e^t \cos t - e^t \sin t - e^t \sin t - e^t \cos t) \mathbf{i} + (e^t \sin t + e^t \cos t + e^t \cos t - e^t \sin t) \mathbf{j} + e^t \mathbf{k}$$

$$= -2e^t \sin t \mathbf{i} + 2e^t \cos t \mathbf{j} + e^t \mathbf{k}$$

(b) Write down the integral for the distance traveled by the object between $t = 0$ and $t = 2$ but do not evaluate. \[5 \text{ pts}\]

Solution:

We have

$$||\vec{r}'(t)|| = \sqrt{(e^t \cos t - e^t \sin t)^2 + (e^t \sin t + e^t \cos t)^2 + (e^t)^2}$$

so that the length is

$$\int_0^2 \sqrt{(e^t \cos t - e^t \sin t)^2 + (e^t \sin t + e^t \cos t)^2 + (e^t)^2} \, dt$$

(c) Compute the curvature of the object’s path at $t = 0$. \[10 \text{ pts}\]

Solution:

We have

$$\vec{r}'(0) = 1 \mathbf{i} + 1 \mathbf{j} + 1 \mathbf{k}$$

and

$$\vec{r}''(0) = 0 \mathbf{i} + 2 \mathbf{j} + 1 \mathbf{k}$$

so that

$$\kappa = \frac{||(1 \mathbf{i} + 1 \mathbf{j} + 1 \mathbf{k}) \times (0 \mathbf{i} + 2 \mathbf{j} + 1 \mathbf{k})||}{||1 \mathbf{i} + 1 \mathbf{j} + 1 \mathbf{k}||^3} = \frac{||-1 \mathbf{i} - 1 \mathbf{j} + 2 \mathbf{k}||}{||1 \mathbf{i} + 1 \mathbf{j} + 1 \mathbf{k}||^3} = \frac{\sqrt{6}}{3^{3/2}}$$
3. Use the method of Lagrange Multipliers to determine the maximum and minimum values of the function \(f(x, y) = xy \) subject to the constraint \(4x^2 + y^2 = 4 \). You may assume that the maximum and minimum exist.

Solution:

We assign \(g(x, y) = 4x^2 + y^2 \) and then we set up the system:

\[
\begin{align*}
 y &= \lambda(8x) \tag{1} \\
 x &= \lambda(2y) \tag{2} \\
 4x^2 + y^2 &= 4 \tag{3}
\end{align*}
\]

Equation (1) tells us that \(\lambda = \frac{y}{8x} \) unless \(x = 0 \) (but \(x = 0 \) would give us \(y = 0 \) in (1) and this contradicts (3)).

Equation (2) tells us that \(\lambda = \frac{x}{2y} \) unless \(y = 0 \) (but \(y = 0 \) would give us \(x = 0 \) in (1) and this contradicts (3)).

Thus \(\frac{y}{8x} = \frac{x}{2y} \) and so \(2y^2 = 8x^2 \) or \(y^2 = 4x^2 \).

Plugging this into (3) yields \(8x^2 = 4 \) so \(x = \pm \sqrt{1/2} \).

If \(x = \sqrt{1/2} \) then (3) tells us \(x = \pm \sqrt{2} \) and the same for the other \(x \).

Thus we have four points: \((-\sqrt{1/2}, -\sqrt{2}), (-\sqrt{1/2}, +\sqrt{2}), (+\sqrt{1/2}, -\sqrt{2}), \) and \((+\sqrt{1/2}, +\sqrt{2})\)

Next:

\[
\begin{align*}
 f(-\sqrt{1/2}, -\sqrt{2}) &= 1 \\
 f(-\sqrt{1/2}, +\sqrt{2}) &= -1 \\
 f(+\sqrt{1/2}, -\sqrt{2}) &= -1 \\
 f(+\sqrt{1/2}, +\sqrt{2}) &= 1
\end{align*}
\]

Thus the minimum is \(-1\) and the maximum is \(1\).
4. (a) Let \(D(x, y) = 300 - 2x^2 - 3y^2 \) denote the depth of a lake in feet. If a boat is at \((3, 5)\), in what direction should the boat travel for the depth of the water to increase most rapidly and what would that rate of increase be?

Solution:

We have

\[
\nabla D(x, y) = -4x \mathbf{i} - 6y \mathbf{j}
\]

and so the direction would be

\[
\nabla D(3, 5) = -12 \mathbf{i} - 30 \mathbf{j}
\]

and the rate of increase would be

\[
||\nabla D(3, 5)|| = \sqrt{(-12)^2 + (-30)^2}
\]

(b) Ohm’s Law states that \(I = \frac{V}{R} \) which relates current \((I) \) with voltage \((V) \) and resistance \((R) \). Suppose the voltage is decreasing at 5 volts/second while the resistance is decreasing at 2 ohms/second. Find the rate of change of the current with respect to time when the voltage is 80 volts and the resistance is 40 ohms.

Solution:

The chain rule tells us that

\[
\frac{dI}{dt} = \frac{\partial I}{\partial V} \frac{dV}{dt} + \frac{\partial I}{\partial R} \frac{dR}{dt}
\]

\[
= \frac{1}{R} (-5) - \frac{V}{R^2} (-2)
\]

\[
= \frac{1}{40} (-5) - \frac{80}{40^2} (-2)
\]
5. Let R be the region in the xy-plane above the graph of $y = x^2$ and below the graph of $y = -(x - 1)^2 + 1$. Let D be the solid above R and below the plane $x + y + z = 5$.

(a) Separately sketch reasonable pictures of both R and D.

Solution:

(b) Set up an iterated double integral for the volume of D. Do not evaluate.

Solution:

If we parametrize R as vertically simple then we get

$$
\int_0^1 \int_{x^2}^{-(x-1)^2+1} 5 - x - y \, dy \, dx
$$
6. Let R be the parallelogram in the xy-plane formed by the lines $x + y = 1$, $x + y = 2$, $2y - x = 2$ and $2y - x = 0$.

(a) Sketch R.

Solution:

(b) Use a change of variables to evaluate $\iint_{R} x + y \, dA$. Make sure to draw the new region in the uv-plane. This integral must be evaluated!

Solution:

We substitute $u = x + y$ and $v = 2y - x = -x + 2y$. This gives us the new region S bounded by the lines $u = 1, 2$ and $v = 0, 2$:

Then we solve to get $x = \frac{2}{3}u - \frac{1}{3}v$ and $y = \frac{1}{3}u + \frac{1}{3}v$ so that

$$J = \begin{vmatrix} 2/3 & -1/3 \\ 1/3 & 1/3 \end{vmatrix} = 1/3$$

Alternately without solving for x and y:

$$J = 1 \div \begin{vmatrix} 1 & 1 \\ -1 & 2 \end{vmatrix} = 1/3$$

Then

$$\iint_{R} x + y \, dA = \iint_{S} u|1/3| \, dA$$

$$= \int_{1}^{2} \int_{0}^{2} \frac{1}{3}u \, dv \, du$$

$$= \int_{1}^{2} \frac{1}{3}uvw \bigg|_{0}^{2} \, du$$

$$= \int_{1}^{2} \frac{2}{3}u \, du = \frac{1}{3}u^2 \bigg|_{1}^{4} = \frac{1}{3}(4) - \frac{1}{3}(1)$$
7. Let \(C \) be the edge of the part of the plane \(2x + 2y + z = 10 \) in the first octant, oriented counterclockwise when viewed from above.

(a) Apply Stokes’ Theorem to the integral \(\int_C 2y \, dx + x \, dy + xz \, dz \) to get a surface integral over a surface \(\Sigma \). Describe \(\Sigma \), including its induced orientation. Either words or a picture suffice.

Solution:

We have

\[
\int_C 2y \, dx + x \, dy + xz \, dz = \iint_{\Sigma} \left[(0 - 0) \, i - (z - 0) \, j + (1 - 2) \, k \right] \cdot \bar{n} \, dS
\]

where \(\Sigma \) is the portion of the plane \(2x + 2y + z = 10 \) in the first octant, oriented up and out.

(b) Parametrize \(\Sigma \) and convert your answer to (a) to an iterated double integral.

Solution:

Parametrize \(\Sigma \) as: \(\bar{r}(x, y) = x \, i + y \, j + (10 - 2x - 2y) \, k \) where \(0 \leq x \leq 5 \) and \(0 \leq y \leq 5 - x \). Then

\[
\bar{r}_x = 1 \, i + 0 \, j - 2 \, k \\
\bar{r}_y = 0 \, i + 1 \, j - 2 \, k \\
\bar{r}_x \times \bar{r}_y = 2 \, i + 2 \, j + 1 \, k
\]

these vectors match the orientation for \(\Sigma \) and so

\[
\iint_{\Sigma} \left[(0 - 0) \, i - (z - 0) \, j + (1 - 2) \, k \right] \cdot \bar{n} \, dS = + \iint_R \left[0 \, i - (10 - 2x - 2y) \, j - 1 \, k \right] \cdot [2 \, i + 2 \, j + 1 \, k] \, dA
\]

\[
= \int_0^5 \int_0^{5-x} 4x + 4y - 21 \, dy \, dx
\]

(c) Evaluate.

Solution:

\[
\int_0^5 \int_0^{5-x} 4x + 4y - 21 \, dy \, dx = \int_0^5 4xy + 2y^2 - 21y \bigg|_0^{5-x} \, dx
\]

\[
= \int_0^5 4x(5 - x) + 2(5 - x)^2 - 21(5 - x) \, dx
\]

\[
= \int_0^5 20x - 4x^2 + 2x^2 - 20x + 50 - 105 + 21x \, dx
\]

\[
= \int_0^5 -2x^2 + 21x - 55 \, dx
\]

\[
= -\frac{2}{3}x^3 + 21x^2 - 55x \bigg|_0^5 = -\frac{2}{3}(5)^3 + \frac{21}{2}(5)^2 - 55(5)
\]
8. (a) Let C be the part of the graph of the function $y = x^2$ from $x = 1$ to $x = 2$. Write down the [10 pts] iterated single integral corresponding to $\int_C x - y \, ds$. Do not evaluate.

Solution:
We parametrize as $\vec{r}(t) = t \, \mathbf{i} + t^2 \, \mathbf{j}$ for $1 \leq t \leq 2$.
Then $\vec{r}'(t) = 1 \, \mathbf{i} + 2t \, \mathbf{j}$ and $||\vec{r}'(t)|| = \sqrt{5}$.
Thus
$$\int_C x - y \, ds = \int_1^2 (t - t^2) \sqrt{5} \, dt$$

(b) Let D be the solid inside the cone with spherical equation $\phi = \frac{\pi}{6}$ and below the plane $z = 3$. [15 pts] Let Σ be the surface of D oriented inwards. Apply the Divergence Theorem to the surface integral $\iint_{\Sigma} (x \, \mathbf{i} + xz \, \mathbf{j} + z^2 \, \mathbf{k}) \cdot \vec{n} \, dS$ and then use a spherical parametrization to obtain a triple iterated integral. Do not evaluate.

Solution:
By the Divergence Theorem (and due to orientation)
$$\iint_{\Sigma} (x \, \mathbf{i} + xz \, \mathbf{j} + z^2 \, \mathbf{k}) \cdot \vec{n} \, dS = - \iiint_D 1 + 0 + 2z \, dV$$
where V is the solid inside the cone and below the plane.
Then the plane in spherical is $\rho = 3 / \cos \phi = 3 \sec \phi$ and so we get

$$= - \int_0^{2\pi} \int_0^{\pi/6} \int_0^{3\sec \phi} (2\rho \cos \phi + 1) \rho^2 \sin \phi \, d\rho d\phi d\theta$$