241 Final Spring 2014 Notes

- 1. (a) Find the vector (subtract) and use either point.
 - (b) Know the formula. You'll need a point on the plane, any point satisfying the plane equation will work.
- 2. (a) Formula!
 - (b) Formula! Know the nice one with \bar{v} and \bar{a} .
- 3. (a) Formula!
 - (b) Formula!
 - (c) Plug the components of \bar{r} into the plane equation and solve to get t. Put this back into \bar{r} to get the point.
- 4. The constraint function is $g(x, y) = (x 2)^2 + y^2$. Write down the three equations $f_x = \lambda g_x$, $f_y = \lambda g_y$ and $(x 2)^2 + y^2 = 4$ and solve for all possible (x, y). Plug these into f and select the largest and smallest.
- 5. Take the derivatives and set them equal to 0 to get the critical points. Plug each point into the discriminant (and perhaps f_{xx}) to categorize.
- 6. (a) Take the gradient and divide by its magnitude.
 - (b) This is just the magnitude from the previous part.
 - (c) Note the point changed. Take the gradient at this new point and dot it with the direction but make the direction a unit vector first.
- 7. (a) Best is $\bar{r}(x,\theta)$.
 - (b) First write the cylinder as the level surface for $f(x, y, z) = y^2 + z^2$. Take the gradient to get the normal vector and then use the point to build the plane.
- 8. Use spherical coordinates. This cone is $\phi = \pi/3$.
- 9. The surface Σ is the part of the parabolic sheet inside the cylinder. Parametrize this with $\bar{r}(x, z)$ because you know $y = x^2$.
- 10. (a) Green's Theorem for sure, and the $N_x M_y$ is nice!
 - (b) Surface area is the surface integral $\iint_{\Sigma} 1 \, dS$ and the only way to do this is to parametrize Σ . Complete the square on the cylinder and then Σ is nice in polar.