
Math 241 Spring 2014 Final Exam Solutions

1. (a) Find the symmetric equation of the line containing (1, 2, 3) and (−1, 5, 3). [10 pts]

Solution:

L = −2 i+ 3 j+ 0 k so the symmetric equation is:

x− 1

−2
=

y − 2

3
, z = 3

Note: Other common answers may have a negated L and may use the other point so
please watch out for those!

(b) Find the distance between (3,−5, 2) and the plane 2x− y + 3z = 6. Simplify. [10 pts]

Solution:

Normal vector for plane: N = 2 i− 1 j+ 3 k
Point on plane: P = (3, 0, 0)
Point off plane: Q = (3,−5, 2)

We have
PQ = 0 i− 5 j+ 2 k

and hence

d =
|PQ ·N|
||N|| =

|0 + 5 + 6|√
4 + 1 + 9

=
11√
14

Note: You’ll almost certainly see a variety of P and hence PQ vectors. Probably you
won’t see a different N.



2. (a) For u = 2 i− j+ 3 k and v = 4 i+ j− 2 k, find Pruv. [10 pts]

Solution:

Pruv =
u · v
u · uu

=
8− 1− 6

4 + 1 + 9
(2 i− j+ 3 k)

=
1

14
(2 i− j+ 3 k)

(b) Find the curvature κ(1) of r(t) = t2 i+ t3 j. [10 pts]

Solution:

We have:

r(t) = t2 i+ t3 j

v(t) = 2t i+ 3t2 j and so v(1) = 2 i+ 3 j

a(t) = 2 i+ 6t j and so a(1) = 2 i+ 6 j

and so

κ(1) =
||v(1)× a(1)||

||v(1)||3

=
||6 k||

(√
4 + 9

)3

=
6

(13)
3/2



3. (a) Find T(1) for r(t) = t i− 2t3 j+ 1
t k. [5 pts]

Solution:

We have

r′(t) = 1 i− 6t2 j− 1

t2
k

and so

T(1) =
1 i− 6 j− 1 k

||1 i− 6 j− 1 k|| =
1 i− 6 j− 1 k√

1 + 36 + 1

(b) Find the tangential component of acceleration for r(t) = t3 i− 4t j+ t2 k at t = 2. [5 pts]

Solution:

We have

r(t) = t3 i− 4t j+ t2 k

v(t) = 3t2 i− 4 j+ 2t k and so v(2) = 12 i− 4 j+ 4 k

a(t) = 6t j+ 0 j+ 2 k and so a(2) = 12 i+ 0 j+ 2 k

and so

aT (2) =
v(2) · a(2)
||v(2)||

=
144 + 0 + 8√
144 + 16 + 16

(c) Find the point at which the line r(t) = (t+1) i−2t j+(3t−2) k passes through the plane [10 pts]
x+ y − z = 10.

Solution:

The line hits the point when:

(t+ 1) + (−2t)− (3t− 2) = 10

−4t = 7

t = −7/4

and this is at

r(−7/4) = −3

4
i+

7

2
j− 29

4
k

Hence
(

−3

4
,
7

2
,−29

4

)



4. Use the method of Lagrange multipliers to find the maximum and minimum values of the [20 pts]
function f(x, y) = xy on the circle (x− 2)2 + y2 = 4.

Solution:

Our system of equations is

y = λ2(x− 2)

x = λ2y

(x− 2)2 + y2 = 4

To solve the first for λ we must divide by x − 2. If x − 2 = 0 then the first says y = 0 and
(2, 0) does not satisfy the third. Thus x− 2 6= 0 and so the first yields λ = y

2(x−2) .

Plugging this into the second yields x = y
2(x−2) (2y) =

y2

x−2 and so y2 = x(x− 2).

Plugging this into the third yields (x− 2)2 + x(x− 2) = 4 or 2x2 − 6x = 0 or 2x(x− 3) = 0 or
x = 0, 3.

Thus the points are (0, 0) and (3,±
√
3).

Then

f(0, 0) = 0

f(3,
√
3) = 3

√
3 The Maximum

f(3,−
√
3) = −3

√
3 The Minimum



5. Find and categorize all relative extrema for the function f(x, y) = x3 − 2xy + y2. [20 pts]

Solution:

We have

fx = 3x2 − 2y = 0

fy = −2x+ 2y = 0

The second yields y = x and so the first becomes x(3x− 2) = 0 and hence x = 0 or x = 2
3 .

Thus the critical points are (0, 0) and
(

2
3 ,

2
3

)

.

Then we have D(x, y) = (6x)(2)− (−2)2 = 12x− 4 and so:

D(0, 0) = − so (0, 0) is a saddle point.
D(2/3, 2/3) = + and fy(2/3, 2/3) = + so (2/3, 2/3) is a relative minimum.



Please put problem 6 on answer sheet 6

6. Let f(x, y) = ln(x2 + xy + y2).

(a) Find the direction of maximum increase of f at (1, 0) as a unit vector. [7 pts]

Solution:

We have

∇f(x, y) =
2x+ y

x2 + xy + y2
i+

x+ 2y

x2 + xy + y2
j

∇f(1, 0) =
2

1
i+

1

1
j

∇f(1, 0) = 2 i+ 1 j

and so the unit direction is:
2 i+ 1 j√

5

(b) Find the maximum directional derivative at (1, 0). [6 pts]

Solution:

We have
||∇f(1, 0)|| =

√
5

(c) Calculate the directional derivative of f at (0, 1) in the direction of 2 i+ 3 j. [7 pts]

Solution:

The appropriate unit vector is 2 i+3 j√
13

and ∇f(0, 1) = 1 i+ 2 j and so

Duf(0, 1) =

(

2√
13

i+
3√
13

j

)

· (1 i+ 2 j) =
8√
13



7. (a) Find a parametrization for the part of the cylinder y2+z2 = 1 which lies between x = −2 [5 pts]
and x = 2.

Solution:

Perhaps the most obvious possibility is:

r(x, θ) = x i+ cos θ j+ sin θ k
−2 ≤ x ≤ 2
0 ≤ θ ≤ 2π

(b) Find the equation of the plane tangent to the cylinder in part (a) at the point
(

1, 1√
2
, 1√

2

)

. [15 pts]

Write your answer in the form ax+ by + cz = d.

Solution:

The cylinder is the level surface for f(x, y, z) = y2 + z2 = 1 and hence the normal vector
is:

∇f(x, y, z) = 0 i+ 2y j+ 2z k

∇f

(

1,
1√
2
,
1√
2

)

= 0 i+
√
2 j+

√
2 k

and so the plane is

0(x− 1) +
√
2

(

y − 1√
2

)

+
√
2

(

z − 1√
2

)

= 0

√
2y +

√
2z = 2

Note: A student may write y + z =
√
2 instead, or other variations.



8. Find the volume of the solid region D that is bounded on the sides by the upper nappe of the [20 pts]
cone z2 = 1

3 (x
2 + y2), on the top by the sphere x2 + y2 + z2 = 9 and below by the sphere

x2 + y2 + z2 = 1.

Solution:

We have:

V olume =

∫∫∫

D

1 dV

=

∫ 2π

0

∫ π/3

0

∫ 3

1

ρ2 sinφ dρ dφ dθ

=

∫ 2π

0

∫ π/3

0

1

3
ρ3 sinφ

∣

∣

∣

∣

3

1

dφ dθ

=
26

3

∫ 2π

0

∫ π/3

0

sinφ dφ dθ

=
26

3

∫ 2π

0

− cosφ

∣

∣

∣

∣

π/3

0

dθ

=
26

3

∫ 2π

0

1

2
dθ

=
13

3

∫ 2π

0

1 dθ

=
26π

3



9. Let C be the intersection curve of the parabolic sheet y = x2 with the cylinder x2 + z2 = 4, [20 pts]
oriented clockwise when viewed from the positive y-axis. Apply Stokes’ Theorem to the integral
∫

C
2y dx + xz dy + z2 dz and continue until you have an iterated double integral. Do not

evaluate.

Solution:

Stokes’ Theorem gives us:

∫

C

2y dx+ zy dy + z2 dz =

∫∫

Σ

(−x i+ 0 j+ (z − 2) k) · n dS

Where Σ is the portion of the parabolic sheet inside the cylinder, oriented to the left.

We parametrize Σ as

r(r, θ) = r cos θ i+ r2 cos2 θ j+ r sin θ k
0 ≤ r ≤ 2
0 ≤ θ ≤ 2π

And so

rr = cos θ i+ 2r cos2 θ j+ sin θ k

rθ = −r sin θ i− 2r2 sin θ cos θ j+ r cos θ k

rr × rθ = 2r2 cos θ i− r j+ 0 k

This matches the orientation of Σ and hence

∫∫

Σ

(−x i+ 0 j+ (z − 2) k) · n dS

= +

∫∫

R

(−r cos θ i+ 0 j+ (r sin θ − 2) k) · (2r2 cos θ i− r j+ 0 k) dA

=

∫ 2π

0

∫ 2

0

(−r cos θ)(2r2 cos θ) + (0)(−r) + (r sin θ − 2)(0) dr dθ



10. (a) Evaluate
∫

C
7y dx + 12y dy where C is the semicircle y =

√
9− x2 along with the line [8 pts]

segment joining (−3, 0) with (3, 0), oriented clockwise.

Solution:

We apply Green’s Theorem with a negative sign due to the orientation:

∫

C

7y dx+ 12y dy = −
∫∫

R

0− 7 dA

= 7(Area of R)

= 7

(

1

2
π32

)

(b) Find the surface area of the portion of the sphere x2 + y2 + z2 = 4 inside the cylinder [12 pts]
x2 + y2 − 2y = 0 as an iterated double integral in r and θ. Do not evaluate.

Solution:

The cylinder is x2 + (y− 2)2 = 4 or r = 2 sin θ. We therefore parametrize the top part of
the surface (which we’ll double) as

r(r, θ) = r cos θ i+ r sin θ j+
√
4− r2 k

0 ≤ θ ≤ π
0 ≤ r ≤ 2 sin θ

and so

rr = cos θ i+ sin θ j+ 2r(4− r2)−1/2 k

rθ = −r sin θ i+ r cos θ j+ 0 k

rr × rθ = 2r2 cos θ(4− r2)−1/2 i+ 2r2 sin θ(4− r2)−1/2 j+ r k

||rr × rθ|| =
√

4r4 cos2 θ(4− r2)−1 + 4r4 sin2 θ(4− r2)−1 + r2

=
√

4r2(4− r2)−1 + r2

And so

SA = 2

∫∫

Σ

1 dS

= 2

∫∫

R

√

4r2(4− r2)−1 + r2 dA

= 2

∫ π

0

∫ 2 sin θ

0

√

4r2(4− r2)−1 + r2 dr dθ

Note: This could be done with the shortcut formula from the book and then converted to
polar. This would probably end up with the r2 pulled to the outside as r since it arises
as the Jacobian.


