Math 241 Spring 2014 Final Exam Solutions

1. (a) Find the symmetric equation of the line containing $(1,2,3)$ and $(-1,5,3)$.
[10 pts]

Solution:

$\mathbf{L}=-2 \mathbf{i}+3 \mathbf{j}+0 \mathbf{k}$ so the symmetric equation is:

$$
\frac{x-1}{-2}=\frac{y-2}{3}, z=3
$$

Note: Other common answers may have a negated \mathbf{L} and may use the other point so please watch out for those!
(b) Find the distance between $(3,-5,2)$ and the plane $2 x-y+3 z=6$. Simplify.

Solution:

Normal vector for plane: $\mathbf{N}=2 \mathbf{i}-1 \mathbf{j}+3 \mathbf{k}$
Point on plane: $P=(3,0,0)$
Point off plane: $Q=(3,-5,2)$
We have

$$
\overline{P Q}=0 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k}
$$

and hence

$$
d=\frac{|\overline{P Q} \cdot \mathbf{N}|}{\|\mathbf{N}\|}=\frac{|0+5+6|}{\sqrt{4+1+9}}=\frac{11}{\sqrt{14}}
$$

Note: You'll almost certainly see a variety of P and hence $\overline{P Q}$ vectors. Probably you won't see a different \mathbf{N}.
2. (a) For $\mathbf{u}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ and $\mathbf{v}=4 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$, find $P r_{\mathbf{u}} \mathbf{v}$.

Solution:

$$
\begin{aligned}
\operatorname{Pr}_{\mathbf{u}} \mathbf{v} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \\
& =\frac{8-1-6}{4+1+9}(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}) \\
& =\frac{1}{14}(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k})
\end{aligned}
$$

(b) Find the curvature $\kappa(1)$ of $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}$.
[10 pts]

Solution:

We have:

$$
\begin{aligned}
& \mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j} \\
& \mathbf{v}(t)=2 t \mathbf{i}+3 t^{2} \mathbf{j} \text { and so } \mathbf{v}(1)=2 \mathbf{i}+3 \mathbf{j} \\
& \mathbf{a}(t)=2 \mathbf{i}+6 t \mathbf{j} \text { and so } \mathbf{a}(1)=2 \mathbf{i}+6 \mathbf{j}
\end{aligned}
$$

and so

$$
\begin{aligned}
\kappa(1) & =\frac{\|\mathbf{v}(1) \times \mathbf{a}(1)\|}{\|\mathbf{v}(1)\|^{3}} \\
& =\frac{\|6 \mathbf{k}\|}{(\sqrt{4+9})^{3}} \\
& =\frac{6}{(13)^{3 / 2}}
\end{aligned}
$$

3. (a) Find $\mathbf{T}(1)$ for $\mathbf{r}(t)=t \mathbf{i}-2 t^{3} \mathbf{j}+\frac{1}{t} \mathbf{k}$.

Solution:

We have

$$
\mathbf{r}^{\prime}(t)=1 \mathbf{i}-6 t^{2} \mathbf{j}-\frac{1}{t^{2}} \mathbf{k}
$$

and so

$$
\mathbf{T}(1)=\frac{1 \mathbf{i}-6 \mathbf{j}-1 \mathbf{k}}{\|1 \mathbf{i}-6 \mathbf{j}-1 \mathbf{k}\|}=\frac{1 \mathbf{i}-6 \mathbf{j}-1 \mathbf{k}}{\sqrt{1+36+1}}
$$

(b) Find the tangential component of acceleration for $\mathbf{r}(t)=t^{3} \mathbf{i}-4 t \mathbf{j}+t^{2} \mathbf{k}$ at $t=2$.

Solution:

We have

$$
\begin{aligned}
\mathbf{r}(t) & =t^{3} \mathbf{i}-4 t \mathbf{j}+t^{2} \mathbf{k} \\
\mathbf{v}(t) & =3 t^{2} \mathbf{i}-4 \mathbf{j}+2 t \mathbf{k} \text { and so } \mathbf{v}(2)=12 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k} \\
\mathbf{a}(t) & =6 t \mathbf{j}+0 \mathbf{j}+2 \mathbf{k} \text { and so } \mathbf{a}(2)=12 \mathbf{i}+0 \mathbf{j}+2 \mathbf{k}
\end{aligned}
$$

and so

$$
\begin{aligned}
\mathbf{a}_{T}(2) & =\frac{\mathbf{v}(2) \cdot \mathbf{a}(2)}{\|\mathbf{v}(2)\|} \\
& =\frac{144+0+8}{\sqrt{144+16+16}}
\end{aligned}
$$

(c) Find the point at which the line $\mathbf{r}(t)=(t+1) \mathbf{i}-2 t \mathbf{j}+(3 t-2) \mathbf{k}$ passes through the plane $\quad[10 \mathrm{pts}]$ $x+y-z=10$.

Solution:

The line hits the point when:

$$
\begin{aligned}
(t+1)+(-2 t)-(3 t-2) & =10 \\
-4 t & =7 \\
t & =-7 / 4
\end{aligned}
$$

and this is at

$$
\mathbf{r}(-7 / 4)=-\frac{3}{4} \mathbf{i}+\frac{7}{2} \mathbf{j}-\frac{29}{4} \mathbf{k}
$$

Hence

$$
\left(-\frac{3}{4}, \frac{7}{2},-\frac{29}{4}\right)
$$

4. Use the method of Lagrange multipliers to find the maximum and minimum values of the [20 pts] function $f(x, y)=x y$ on the circle $(x-2)^{2}+y^{2}=4$.

Solution:

Our system of equations is

$$
\begin{aligned}
y & =\lambda 2(x-2) \\
x & =\lambda 2 y \\
(x-2)^{2}+y^{2} & =4
\end{aligned}
$$

To solve the first for λ we must divide by $x-2$. If $x-2=0$ then the first says $y=0$ and $(2,0)$ does not satisfy the third. Thus $x-2 \neq 0$ and so the first yields $\lambda=\frac{y}{2(x-2)}$.
Plugging this into the second yields $x=\frac{y}{2(x-2)}(2 y)=\frac{y^{2}}{x-2}$ and so $y^{2}=x(x-2)$.
Plugging this into the third yields $(x-2)^{2}+x(x-2)=4$ or $2 x^{2}-6 x=0$ or $2 x(x-3)=0$ or $x=0,3$.
Thus the points are $(0,0)$ and $(3, \pm \sqrt{3})$.
Then

$$
\begin{aligned}
f(0,0) & =0 & \\
f(3, \sqrt{3}) & =3 \sqrt{3} & \text { The Maximum } \\
f(3,-\sqrt{3}) & =-3 \sqrt{3} & \text { The Minimum }
\end{aligned}
$$

5. Find and categorize all relative extrema for the function $f(x, y)=x^{3}-2 x y+y^{2}$.
[20 pts]

Solution:

We have

$$
\begin{aligned}
& f_{x}=3 x^{2}-2 y=0 \\
& f_{y}=-2 x+2 y=0
\end{aligned}
$$

The second yields $y=x$ and so the first becomes $x(3 x-2)=0$ and hence $x=0$ or $x=\frac{2}{3}$.

Thus the critical points are $(0,0)$ and $\left(\frac{2}{3}, \frac{2}{3}\right)$.

Then we have $D(x, y)=(6 x)(2)-(-2)^{2}=12 x-4$ and so:
$D(0,0)=-$ so $(0,0)$ is a saddle point.
$D(2 / 3,2 / 3)=+$ and $f_{y}(2 / 3,2 / 3)=+$ so $(2 / 3,2 / 3)$ is a relative minimum.

Please put problem 6 on answer sheet 6

6. Let $f(x, y)=\ln \left(x^{2}+x y+y^{2}\right)$.
(a) Find the direction of maximum increase of f at $(1,0)$ as a unit vector.

Solution:

We have

$$
\begin{aligned}
\nabla f(x, y) & =\frac{2 x+y}{x^{2}+x y+y^{2}} \mathbf{i}+\frac{x+2 y}{x^{2}+x y+y^{2}} \mathbf{j} \\
\nabla f(1,0) & =\frac{2}{1} \mathbf{i}+\frac{1}{1} \mathbf{j} \\
\nabla f(1,0) & =2 \mathbf{i}+1 \mathbf{j}
\end{aligned}
$$

and so the unit direction is:

$$
\frac{2 \mathbf{i}+1 \mathbf{j}}{\sqrt{5}}
$$

(b) Find the maximum directional derivative at $(1,0)$.

Solution:

We have

$$
\|\nabla f(1,0)\|=\sqrt{5}
$$

(c) Calculate the directional derivative of f at $(0,1)$ in the direction of $2 \mathbf{i}+3 \mathbf{j}$.

Solution:

The appropriate unit vector is $\frac{2 \mathbf{i}+3 \mathbf{j}}{\sqrt{13}}$ and $\nabla f(0,1)=1 \mathbf{i}+2 \mathbf{j}$ and so

$$
D_{\mathbf{u}} f(0,1)=\left(\frac{2}{\sqrt{13}} \mathbf{i}+\frac{3}{\sqrt{13}} \mathbf{j}\right) \cdot(1 \mathbf{i}+2 \mathbf{j})=\frac{8}{\sqrt{13}}
$$

7. (a) Find a parametrization for the part of the cylinder $y^{2}+z^{2}=1$ which lies between $x=-2 \quad[5 \mathrm{pts}]$ and $x=2$.

Solution:

Perhaps the most obvious possibility is:

$$
\begin{aligned}
\mathbf{r}(x, \theta)= & x \mathbf{i}+\cos \theta \mathbf{j}+\sin \theta \mathbf{k} \\
& -2 \leq x \leq 2 \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

(b) Find the equation of the plane tangent to the cylinder in part (a) at the point $\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Write your answer in the form $a x+b y+c z=d$.

Solution:

The cylinder is the level surface for $f(x, y, z)=y^{2}+z^{2}=1$ and hence the normal vector is:

$$
\begin{aligned}
\nabla f(x, y, z) & =0 \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k} \\
\nabla f\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) & =0 \mathbf{i}+\sqrt{2} \mathbf{j}+\sqrt{2} \mathbf{k}
\end{aligned}
$$

and so the plane is

$$
\begin{aligned}
0(x-1)+\sqrt{2}\left(y-\frac{1}{\sqrt{2}}\right)+\sqrt{2}\left(z-\frac{1}{\sqrt{2}}\right) & =0 \\
\sqrt{2} y+\sqrt{2} z & =2
\end{aligned}
$$

Note: A student may write $y+z=\sqrt{2}$ instead, or other variations.
8. Find the volume of the solid region D that is bounded on the sides by the upper nappe of the cone $z^{2}=\frac{1}{3}\left(x^{2}+y^{2}\right)$, on the top by the sphere $x^{2}+y^{2}+z^{2}=9$ and below by the sphere $x^{2}+y^{2}+z^{2}=1$.

Solution:

We have:

$$
\begin{aligned}
\text { Volume } & =\iiint_{D} 1 d V \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{1}^{3} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \frac{1}{3} \rho^{3} \sin \phi\right|_{1} ^{3} d \phi d \theta \\
& =\frac{26}{3} \int_{0}^{2 \pi} \int_{0}^{\pi / 3} \sin \phi d \phi d \theta \\
& =\frac{26}{3} \int_{0}^{2 \pi}-\left.\cos \phi\right|_{0} ^{\pi / 3} d \theta \\
& =\frac{26}{3} \int_{0}^{2 \pi} \frac{1}{2} d \theta \\
& =\frac{13}{3} \int_{0}^{2 \pi} 1 d \theta \\
& =\frac{26 \pi}{3}
\end{aligned}
$$

9. Let C be the intersection curve of the parabolic sheet $y=x^{2}$ with the cylinder $x^{2}+z^{2}=4$, oriented clockwise when viewed from the positive y-axis. Apply Stokes' Theorem to the integral $\int_{C} 2 y d x+x z d y+z^{2} d z$ and continue until you have an iterated double integral. Do not evaluate.

Solution:

Stokes' Theorem gives us:

$$
\int_{C} 2 y d x+z y d y+z^{2} d z=\iint_{\Sigma}(-x \mathbf{i}+0 \mathbf{j}+(z-2) \mathbf{k}) \cdot \mathbf{n} d S
$$

Where Σ is the portion of the parabolic sheet inside the cylinder, oriented to the left.
We parametrize Σ as

$$
\begin{gathered}
\mathbf{r}(r, \theta)=r \cos \theta \mathbf{i}+r^{2} \cos ^{2} \theta \mathbf{j}+r \sin \theta \mathbf{k} \\
0 \leq r \leq 2 \\
0 \leq \theta \leq 2 \pi
\end{gathered}
$$

And so

$$
\begin{aligned}
\mathbf{r}_{r} & =\cos \theta \mathbf{i}+2 r \cos ^{2} \theta \mathbf{j}+\sin \theta \mathbf{k} \\
\mathbf{r}_{\theta} & =-r \sin \theta \mathbf{i}-2 r^{2} \sin \theta \cos \theta \mathbf{j}+r \cos \theta \mathbf{k} \\
\mathbf{r}_{r} \times \mathbf{r}_{\theta} & =2 r^{2} \cos \theta \mathbf{i}-r \mathbf{j}+0 \mathbf{k}
\end{aligned}
$$

This matches the orientation of Σ and hence

$$
\begin{gathered}
\iint_{\Sigma}(-x \mathbf{i}+0 \mathbf{j}+(z-2) \mathbf{k}) \cdot \mathbf{n} d S \\
=+\iint_{R}(-r \cos \theta \mathbf{i}+0 \mathbf{j}+(r \sin \theta-2) \mathbf{k}) \cdot\left(2 r^{2} \cos \theta \mathbf{i}-r \mathbf{j}+0 \mathbf{k}\right) d A \\
=\int_{0}^{2 \pi} \int_{0}^{2}(-r \cos \theta)\left(2 r^{2} \cos \theta\right)+(0)(-r)+(r \sin \theta-2)(0) d r d \theta
\end{gathered}
$$

10. (a) Evaluate $\int_{C} 7 y d x+12 y d y$ where C is the semicircle $y=\sqrt{9-x^{2}}$ along with the line [8 pts] segment joining $(-3,0)$ with $(3,0)$, oriented clockwise.

Solution:

We apply Green's Theorem with a negative sign due to the orientation:

$$
\begin{aligned}
\int_{C} 7 y d x+12 y d y & =-\iint_{R} 0-7 d A \\
& =7(\text { Area of } \mathrm{R}) \\
& =7\left(\frac{1}{2} \pi 3^{2}\right)
\end{aligned}
$$

(b) Find the surface area of the portion of the sphere $x^{2}+y^{2}+z^{2}=4$ inside the cylinder $\quad[12 \mathrm{pts}]$ $x^{2}+y^{2}-2 y=0$ as an iterated double integral in r and θ. Do not evaluate.

Solution:

The cylinder is $x^{2}+(y-2)^{2}=4$ or $r=2 \sin \theta$. We therefore parametrize the top part of the surface (which we'll double) as

$$
\begin{gathered}
\mathbf{r}(r, \theta)=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}+\sqrt{4-r^{2}} \mathbf{k} \\
0 \leq \theta \leq \pi \\
0 \leq r \leq 2 \sin \theta
\end{gathered}
$$

and so

$$
\begin{aligned}
\mathbf{r}_{r} & =\cos \theta \mathbf{i}+\sin \theta \mathbf{j}+2 r\left(4-r^{2}\right)^{-1 / 2} \mathbf{k} \\
\mathbf{r}_{\theta} & =-r \sin \theta \mathbf{i}+r \cos \theta \mathbf{j}+0 \mathbf{k} \\
\mathbf{r}_{r} \times \mathbf{r}_{\theta} & =2 r^{2} \cos \theta\left(4-r^{2}\right)^{-1 / 2} \mathbf{i}+2 r^{2} \sin \theta\left(4-r^{2}\right)^{-1 / 2} \mathbf{j}+r \mathbf{k} \\
\left\|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right\| & =\sqrt{4 r^{4} \cos ^{2} \theta\left(4-r^{2}\right)^{-1}+4 r^{4} \sin ^{2} \theta\left(4-r^{2}\right)^{-1}+r^{2}} \\
& =\sqrt{4 r^{2}\left(4-r^{2}\right)^{-1}+r^{2}}
\end{aligned}
$$

And so

$$
\begin{aligned}
\mathrm{SA} & =2 \iint_{\Sigma} 1 d S \\
& =2 \iint_{R} \sqrt{4 r^{2}\left(4-r^{2}\right)^{-1}+r^{2}} d A \\
& =2 \int_{0}^{\pi} \int_{0}^{2 \sin \theta} \sqrt{4 r^{2}\left(4-r^{2}\right)^{-1}+r^{2}} d r d \theta
\end{aligned}
$$

Note: This could be done with the shortcut formula from the book and then converted to polar. This would probably end up with the r^{2} pulled to the outside as r since it arises as the Jacobian.

