
1. (a) Find the point where the line with parametric equations x = 1 + 2t, y = 2− t, z = 4− 2t [10 pts]
meets the plane x+ y − 2z = 10.

Solution: We substitute and solve:

(1 + 2t) + (2− t)− 2(4− 2t) = 10

−5 + 5t = 10

5t = 15

t = 3

So the point is at x = 1 + 2(3) = 7, y = 2 − 3 = −1 and z = 4 − 2(3) = −2, that is
(7,−1,−2).

(b) Find the symmetric equations of the line perpendicular to the plane x + y − 2z = 10 and [10 pts]
passing through the point (1, 2, 3).

Solution: The direction vector for the line can be the same as the normal vector for the
plane:

L = 1 i+ 1 j− 2 k

Thus the parametric equations (if they write them first) would be

x = 1t+ 1

y = 1t+ 2

z = −2t+ 3

and the symmetric equations would be

x− 1

1
=

y − 2

1
=

z − 3

−2

or

x− 1 = y − 2 =
3− z

2



2. (a) Find an equation of the plane passing through the points (−2, 1, 1), (0, 2, 3) and (1, 0,−1). [10 pts]

Solution: If we call the points P , Q and R respectively and then we construct two vectors
and take the cross product to find N:

→

PQ = 2 i+ 1 j+ 2 k
→

PR = 3 i− 1 j− 2 k

N = (−2 + 2) i− (−4− 6) j+ (−2− 3) k

= 0 i+ 10 j− 5 k

Then using P the plane would have equation (simplification not necessary):

0(x− (−2)) + 10(y − 1)− 5(z − 1) = 0

10(y − 1)− 5(z − 1) = 0

10y − 5z = 5

2y − z = 1

(b) Let a = 2 i+ 3 j− 1 k and b = 0 i+ 6 j+ 10 k. Find pr
a
b. [10 pts]

Solution: We have:

pr
a
b =

a · b
a · aa

=
(2)(0) + (3)(6) + (−1)(10)

22 + 32 + (−1)2
(2 i+ 3 j− 1 k)

=
8

14
(2 i+ 3 j− 1 k)

=
8

7
i+

12

7
j− 4

7
k



3. Suppose C is parametrized by r(t) = et cos t i+ et sin t j for 0 ≤ t ≤ 3.

(a) Find the length of the curve C. Simplify. [10 pts]

Solution: To find the length we first find:

r′(t) = (et cos t− et sin t) i+ (et sin t+ et cos t) j

||r′(t)|| =
√

(et cos t− et sin t)2 + (et sin t+ et cos t)2

=
√

e2t cos2 t− 2e2t sin t cos t+ e2t sin2 t+ e2t sin2 t+ 2e2t sin t cos t+ e2t cos2 t

=
√
2e2t

=
√
2et

and so

Length =

∫

3

0

√
2et dt

=
√
2et

∣

∣

∣

∣

3

0

=
√
2e3 −

√
2e0

(b) Find the unit tangent vector T(t) and unit normal vector N(t). Simplify. [10 pts]

Solution: From above we have

T(t) =
r′(t)

||r′(t)||

=
1√
2
[(cos t− sin t) i+ (sin t+ cos t) j]

and from there:

T′(t) =
1√
2
[(− sin t− cos t) i+ (cos t− sin t) j]

||T′(t)|| =
√

1

2
(− sin t− cos t)2 +

1

2
(cos t− sin t)2

=

√

1

2

[

sin2 t+ 2 sin t cos t+ cos2 t+ cos2 t− 2 sin t cos t+ sin2 t
]

= 1

and so

N(t) =
T′(t)

||T′(t)|| =
1√
2
[(− sin t− cos t) i+ (cos t− sin t) j]



4. Use the Fundamental Theorem of Line Integrals to evaluate
∫

C
(2xy+z) dx+x2 dy+x dz where [20 pts]

C is parametrized by r(t) = 16t2 i+ 1

t j+ (2t− 1) k for 1

2
≤ t ≤ 1.

Solution: The potential function is given by

f(x, y, z) = x2y + xz

The endpoints of the curve are given by

Start: r

(

1

2

)

= 4 i+ 2 j+ 0 k (4, 2, 0)

End: r(1) = 16 i+ 1 j+ 1 k (16, 1, 1)

And so
∫

C

(2xy + z) dx+ x2 dy + x dz = f(16, 1, 1)− f(4, 2, 0)

=
[

162(1) + 16(1)
]

−
[

42(2) + 4(0)
]

= 272− 32

= 240



5. The object distance x > 0, image distance y > 0 and focal length L of a simple lens satisfy: [20 pts]

1

x
+

1

y
=

1

L

Using Lagrange multipliers find the minimum of f(x, y) = x+y subject to the constraint above.
You may assume that the minimum exists and that L is a fixed constant.

Solution: The constraint function is given by

g(x, y) =
1

x
+

1

y
− 1

L

So we solve the system

1 = λ

(

− 1

x2

)

(1)

1 = λ

(

− 1

y2

)

(2)

0 =
1

x
+

1

y
− 1

L
(3)

Equation (1) tells us that λ = −x2 and equation (2) tells us that λ = −y2. Therefore x2 = y2

and since they’re both positive, x = y.

Then equation (3) tells us that 1

x + 1

x = 1

L so that x = 1

2L and so y = 1

2L also.

The minimum is then f
(

1

2L ,
1

2L

)

= 1

L .



6. (a) Let z(x, y) = x2 − xy2. For all (x, y) compute [10pts]

∂2z

∂x2

∂2z

∂y2
−
(

∂2z

∂x∂y

)2

Solution: We have

∂z

∂x
= 2x− y2

∂z

∂y
= −2xy

∂2z

∂x2
= 2

∂2z

∂y2
= −2x

∂2z

∂x∂y
= −2y

so that
∂2z

∂x2

∂2z

∂y2
−
(

∂2z

∂x∂y

)2

= (2)(−2x)− (−2y)2

(b) By differentiating both sides of the equation [10pts]

f(tx, ty) = t2f(x, y)

with respect to t and then setting t = 1, show that

x
∂f(x, y)

∂x
+ y

∂f(x, y)

∂y
= 2f(x, y)

Solution: By the chain rule we have

f(tx, ty) = t2f(x, y)

d

dt
f(tx, ty) =

d

dt
t2f(x, y)

∂f

∂x
(tx, ty)(x) +

∂f

∂y
(tx, ty)y = 2tf(x, y)

Then when t = 1 we get

∂f

∂x
(x, y)(x) +

∂f

∂y
(x, y)y = f(x, y)



7. Let R be the region in the xy−plane between the graphs of y = x2 and y = 1 − x2. Let D be [20 pts]
the solid region between R and the parabolic sheet z = x2. Find the volume of D. Simplify as
much as possible.

Solution: The region R is bounded on the left and right by ±
√

1

2
found by solving x2 = 1−x2.

The volume is therefore given by:

Volume =

∫∫∫

D

1 dV

=

∫

√
1/2

−

√
1/2

∫

1−x2

x2

∫ x2

0

1 dz dy dx

=

∫

√
1/2

−

√
1/2

∫

1−x2

x2

x2 dy dx

=

∫

√
1/2

−

√
1/2

x2y

∣

∣

∣

∣

1−x2

x2

x2 dx

=

∫

√
1/2

−

√
1/2

x2(1− x2)− x2(x2) dx

=

∫

√
1/2

−

√
1/2

x2 − 2x4 dx

=
1

3
x3 − 2

5
x5

∣

∣

∣

∣

√
1/2

−

√
1/2

=

[

1

3

(

√

1/2
)3

− 2

5

(

√

1/2
)5

]

−
[

1

3

(

−
√

1/2
)3

− 2

5

(

−
√

1/2
)5

]



8. Let D be the solid region inside the sphere ρ = 2 and inside the cone z =
√

x2 + y2. Evaluate [20 pts]
the integral

∫∫∫

D
z2 dV using spherical coordinates.

Solution: We have:

∫∫∫

D

z2 dV =

∫

2π

0

∫ π/4

0

∫

2

0

(ρ cosφ)2ρ2 sinφ dρ dφ dθ

=

∫

2π

0

∫ π/4

0

1

5
ρ5 sinφ cos2 φ

∣

∣

∣

∣

2

0

dφ dθ

=

∫

2π

0

∫ π/4

0

32

5
sinφ cos2 φ dφ dθ

=

∫

2π

0

−32

15
cos3 φ

∣

∣

∣

∣

π/4

0

dθ

=

∫

2π

0

−32

15

[

cos3(π/4)− cos3(0)
]

dθ

=

∫

2π

0

−32

15

[√
2

4
− 1

]

dθ

= −32

15

[√
2

4
− 1

]

θ

∣

∣

∣

∣

2π

0

= −32

15

[√
2

4
− 1

]

(2π)



9. Let C be the intersection of the cylinder x2 + z2 = 4 with the plane x + y = 4 and with [20 pts]
counterclockwise orientation when viewed from the positive y-axis. Use Stokes’ Theorem to
convert the line integral

∫

C

xy dx+ y dy + xz dz

to a surface integral. Write your integral as an iterated integral in polar coordinates. Do not
evaluate this integral.

Solution: By Stokes’ Theorem:

∫

C

xy dx+ y dy + xz dz =

∫∫

Σ

(0 i− z j− x k) · n dS

where Σ is the part of the plane inside the cylinder with orientation forward and to the right.

We parametrize Σ by

r(r, θ) = r cos θ i+ (4− r cos θ) j+ r sin θ k
0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2 (This is our R)

So then

rr = cos θ i− cos θ j+ sin θ k

rθ = −r sin θ i+ r sin θ j+ r cos θ k

rr × rθ = −r i− r j+ 0 k

which is opposite of Σ’s orientation, thus:

∫∫

Σ

(0 i− z j− x k) · n dS = −
∫∫

R

(0 i− (r sin θ) j− (r cos θ) k) · (−r i− r j+ 0 k) dA

= −
∫

2π

0

∫

2

0

r2 sin θ dr dθ



10. (a) Let C be the triangle in the xy-plane with corners (0, 0), (4, 2) and (0, 6), oriented clockwise. [10 pts]
By using Green’s Theorem calculate the line integral

∫

C
3xy dx+ 4x2 dy.

Solution: If R is the filled-in triangle inside C then, noting the orientation of C, by Green’s
Theorem:

∫

C

3xy dx+ 4x2 dy = −
∫∫

R

8x− 3x dA

= −
∫∫

R

5x dA

= −
∫

4

0

∫

6−x

1

2
x

5x dy dx

= −
∫

4

0

5xy

∣

∣

∣

∣

6−x

1

2
x

dx

= −
∫

4

0

5x(6− x)− 5x

(

1

2
x

)

dx

= −
∫

4

0

−15

2
x2 + 30x dx

=
5

2
x3 − 15x2

∣

∣

∣

∣

4

0

=
3

2
(4)3 − 15(4)2

(b) Evaluate
∫

C
x2y ds where C is the circle x2 + y2 = 4. [10 pts]

Solution: We parametrize the curve by r(t) = 2 cos t i+ 2 sin t j for 0 ≤ t ≤ 2π. Then

r′(t) = −2 sin t i+ 2 cos t j

||r′(t)|| = 2

and so

∫

C

x2y ds =

∫

2π

0

(2 cos t)2(2 sin t)(2) dt

=

∫

2π

0

16 cos2 t sin t dt

= −16

3
cos3 t

∣

∣

∣

∣

2π

0

= 0


