1. (a) Find the point where the line with parametric equations $x=1+2 t, y=2-t, z=4-2 t \quad[10 \mathrm{pts}]$ meets the plane $x+y-2 z=10$.
Solution: We substitute and solve:

$$
\begin{aligned}
(1+2 t)+(2-t)-2(4-2 t) & =10 \\
-5+5 t & =10 \\
5 t & =15 \\
t & =3
\end{aligned}
$$

So the point is at $x=1+2(3)=7, y=2-3=-1$ and $z=4-2(3)=-2$, that is $(7,-1,-2)$.
(b) Find the symmetric equations of the line perpendicular to the plane $x+y-2 z=10$ and $\quad[10 \mathrm{pts}]$ passing through the point $(1,2,3)$.
Solution: The direction vector for the line can be the same as the normal vector for the plane:

$$
\mathbf{L}=1 \mathbf{i}+1 \mathbf{j}-2 \mathbf{k}
$$

Thus the parametric equations (if they write them first) would be

$$
\begin{aligned}
x & =1 t+1 \\
y & =1 t+2 \\
z & =-2 t+3
\end{aligned}
$$

and the symmetric equations would be

$$
\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{-2}
$$

or

$$
x-1=y-2=\frac{3-z}{2}
$$

2. (a) Find an equation of the plane passing through the points $(-2,1,1),(0,2,3)$ and $(1,0,-1)$. [10 pts]

Solution: If we call the points P, Q and R respectively and then we construct two vectors and take the cross product to find \mathbf{N} :

$$
\begin{aligned}
\overrightarrow{P Q} & =2 \mathbf{i}+1 \mathbf{j}+2 \mathbf{k} \\
\overrightarrow{P R} & =3 \mathbf{i}-1 \mathbf{j}-2 \mathbf{k} \\
\mathbf{N} & =(-2+2) \mathbf{i}-(-4-6) \mathbf{j}+(-2-3) \mathbf{k} \\
& =0 \mathbf{i}+10 \mathbf{j}-5 \mathbf{k}
\end{aligned}
$$

Then using P the plane would have equation (simplification not necessary):

$$
\begin{aligned}
0(x-(-2))+10(y-1)-5(z-1) & =0 \\
10(y-1)-5(z-1) & =0 \\
10 y-5 z & =5 \\
2 y-z & =1
\end{aligned}
$$

(b) Let $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}-1 \mathbf{k}$ and $\mathbf{b}=0 \mathbf{i}+6 \mathbf{j}+10 \mathbf{k}$. Find $\mathbf{p r}_{\mathbf{a}} \mathbf{b}$.

Solution: We have:

$$
\begin{aligned}
\mathbf{p r}_{\mathbf{a}} \mathbf{b} & =\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \\
& =\frac{(2)(0)+(3)(6)+(-1)(10)}{2^{2}+3^{2}+(-1)^{2}}(2 \mathbf{i}+3 \mathbf{j}-1 \mathbf{k}) \\
& =\frac{8}{14}(2 \mathbf{i}+3 \mathbf{j}-1 \mathbf{k}) \\
& =\frac{8}{7} \mathbf{i}+\frac{12}{7} \mathbf{j}-\frac{4}{7} \mathbf{k}
\end{aligned}
$$

3. Suppose C is parametrized by $\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j}$ for $0 \leq t \leq 3$.
(a) Find the length of the curve C. Simplify.

Solution: To find the length we first find:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left(e^{t} \cos t-e^{t} \sin t\right) \mathbf{i}+\left(e^{t} \sin t+e^{t} \cos t\right) \mathbf{j} \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{\left(e^{t} \cos t-e^{t} \sin t\right)^{2}+\left(e^{t} \sin t+e^{t} \cos t\right)^{2}} \\
& =\sqrt{e^{2 t} \cos ^{2} t-2 e^{2 t} \sin t \cos t+e^{2 t} \sin ^{2} t+e^{2 t} \sin ^{2} t+2 e^{2 t} \sin t \cos t+e^{2 t} \cos ^{2} t} \\
& =\sqrt{2 e^{2 t}} \\
& =\sqrt{2} e^{t}
\end{aligned}
$$

and so

$$
\begin{aligned}
\text { Length } & =\int_{0}^{3} \sqrt{2} e^{t} d t \\
& =\left.\sqrt{2} e^{t}\right|_{0} ^{3} \\
& =\sqrt{2} e^{3}-\sqrt{2} e^{0}
\end{aligned}
$$

(b) Find the unit tangent vector $\mathbf{T}(t)$ and unit normal vector $\mathbf{N}(t)$. Simplify.

Solution: From above we have

$$
\begin{aligned}
\mathbf{T}(t) & =\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|} \\
& =\frac{1}{\sqrt{2}}[(\cos t-\sin t) \mathbf{i}+(\sin t+\cos t) \mathbf{j}]
\end{aligned}
$$

and from there:

$$
\begin{aligned}
\mathbf{T}^{\prime}(t) & =\frac{1}{\sqrt{2}}[(-\sin t-\cos t) \mathbf{i}+(\cos t-\sin t) \mathbf{j}] \\
\left\|\mathbf{T}^{\prime}(t)\right\| & =\sqrt{\frac{1}{2}(-\sin t-\cos t)^{2}+\frac{1}{2}(\cos t-\sin t)^{2}} \\
& =\sqrt{\frac{1}{2}\left[\sin ^{2} t+2 \sin t \cos t+\cos ^{2} t+\cos ^{2} t-2 \sin t \cos t+\sin ^{2} t\right]}=1
\end{aligned}
$$

and so

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}=\frac{1}{\sqrt{2}}[(-\sin t-\cos t) \mathbf{i}+(\cos t-\sin t) \mathbf{j}]
$$

4. Use the Fundamental Theorem of Line Integrals to evaluate $\int_{C}(2 x y+z) d x+x^{2} d y+x d z$ where [20 pts] C is parametrized by $\mathbf{r}(t)=16 t^{2} \mathbf{i}+\frac{1}{t} \mathbf{j}+(2 t-1) \mathbf{k}$ for $\frac{1}{2} \leq t \leq 1$.
Solution: The potential function is given by

$$
f(x, y, z)=x^{2} y+x z
$$

The endpoints of the curve are given by

$$
\begin{align*}
& \text { Start: } \mathbf{r}\left(\frac{1}{2}\right)=4 \mathbf{i}+2 \mathbf{j}+0 \mathbf{k} \tag{4,2,0}\\
& \text { End: } \mathbf{r}(1)=16 \mathbf{i}+1 \mathbf{j}+1 \mathbf{k} \tag{16,1,1}
\end{align*}
$$

And so

$$
\begin{aligned}
\int_{C}(2 x y+z) d x+x^{2} d y+x d z & =f(16,1,1)-f(4,2,0) \\
& =\left[16^{2}(1)+16(1)\right]-\left[4^{2}(2)+4(0)\right] \\
& =272-32 \\
& =240
\end{aligned}
$$

5. The object distance $x>0$, image distance $y>0$ and focal length L of a simple lens satisfy:
[20 pts]

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{L}
$$

Using Lagrange multipliers find the minimum of $f(x, y)=x+y$ subject to the constraint above. You may assume that the minimum exists and that L is a fixed constant.
Solution: The constraint function is given by

$$
g(x, y)=\frac{1}{x}+\frac{1}{y}-\frac{1}{L}
$$

So we solve the system

$$
\begin{align*}
& 1=\lambda\left(-\frac{1}{x^{2}}\right) \tag{1}\\
& 1=\lambda\left(-\frac{1}{y^{2}}\right) \tag{2}\\
& 0=\frac{1}{x}+\frac{1}{y}-\frac{1}{L} \tag{3}
\end{align*}
$$

Equation (1) tells us that $\lambda=-x^{2}$ and equation (2) tells us that $\lambda=-y^{2}$. Therefore $x^{2}=y^{2}$ and since they're both positive, $x=y$.
Then equation (3) tells us that $\frac{1}{x}+\frac{1}{x}=\frac{1}{L}$ so that $x=\frac{1}{2 L}$ and so $y=\frac{1}{2 L}$ also.
The minimum is then $f\left(\frac{1}{2 L}, \frac{1}{2 L}\right)=\frac{1}{L}$.
6. (a) Let $z(x, y)=x^{2}-x y^{2}$. For all (x, y) compute

$$
\frac{\partial^{2} z}{\partial x^{2}} \frac{\partial^{2} z}{\partial y^{2}}-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}
$$

Solution: We have

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =2 x-y^{2} \\
\frac{\partial z}{\partial y} & =-2 x y \\
\frac{\partial^{2} z}{\partial x^{2}} & =2 \\
\frac{\partial^{2} z}{\partial y^{2}} & =-2 x \\
\frac{\partial^{2} z}{\partial x \partial y} & =-2 y
\end{aligned}
$$

so that

$$
\frac{\partial^{2} z}{\partial x^{2}} \frac{\partial^{2} z}{\partial y^{2}}-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=(2)(-2 x)-(-2 y)^{2}
$$

(b) By differentiating both sides of the equation

$$
f(t x, t y)=t^{2} f(x, y)
$$

with respect to t and then setting $t=1$, show that

$$
x \frac{\partial f(x, y)}{\partial x}+y \frac{\partial f(x, y)}{\partial y}=2 f(x, y)
$$

Solution: By the chain rule we have

$$
\begin{aligned}
f(t x, t y) & =t^{2} f(x, y) \\
\frac{d}{d t} f(t x, t y) & =\frac{d}{d t} t^{2} f(x, y) \\
\frac{\partial f}{\partial x}(t x, t y)(x)+\frac{\partial f}{\partial y}(t x, t y) y & =2 t f(x, y)
\end{aligned}
$$

Then when $t=1$ we get

$$
\frac{\partial f}{\partial x}(x, y)(x)+\frac{\partial f}{\partial y}(x, y) y=f(x, y)
$$

7. Let R be the region in the $x y$-plane between the graphs of $y=x^{2}$ and $y=1-x^{2}$. Let D be the solid region between R and the parabolic sheet $z=x^{2}$. Find the volume of D. Simplify as much as possible.
Solution: The region R is bounded on the left and right by $\pm \sqrt{\frac{1}{2}}$ found by solving $x^{2}=1-x^{2}$. The volume is therefore given by:

$$
\begin{aligned}
\text { Volume } & =\iiint_{D} 1 d V \\
& =\int_{-\sqrt{1 / 2}}^{\sqrt{1 / 2}} \int_{x^{2}}^{1-x^{2}} \int_{0}^{x^{2}} 1 d z d y d x \\
& =\int_{-\sqrt{1 / 2}}^{\sqrt{1 / 2}} \int_{x^{2}}^{1-x^{2}} x^{2} d y d x \\
& =\left.\int_{-\sqrt{1 / 2}}^{\sqrt{1 / 2}} x^{2} y\right|_{x^{2}} ^{1-x^{2}} x^{2} d x \\
& =\int_{-\sqrt{1 / 2}}^{\sqrt{1 / 2}} x^{2}\left(1-x^{2}\right)-x^{2}\left(x^{2}\right) d x \\
& =\int_{-\sqrt{1 / 2}}^{\sqrt{1 / 2}} x^{2}-2 x^{4} d x \\
& =\frac{1}{3} x^{3}-\left.\frac{2}{5} x^{5}\right|_{-\sqrt{1 / 2}} ^{\sqrt{1 / 2}} \\
& =\left[\frac{1}{3}(\sqrt{1 / 2})^{3}-\frac{2}{5}(\sqrt{1 / 2})^{5}\right]-\left[\frac{1}{3}(-\sqrt{1 / 2})^{3}-\frac{2}{5}(-\sqrt{1 / 2})^{5}\right]
\end{aligned}
$$

8. Let D be the solid region inside the sphere $\rho=2$ and inside the cone $z=\sqrt{x^{2}+y^{2}}$. Evaluate [20 pts] the integral $\iiint_{D} z^{2} d V$ using spherical coordinates.
Solution: We have:

$$
\begin{aligned}
\iiint_{D} z^{2} d V & =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2}(\rho \cos \phi)^{2} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \frac{1}{5} \rho^{5} \sin \phi \cos ^{2} \phi\right|_{0} ^{2} d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \frac{32}{5} \sin \phi \cos ^{2} \phi d \phi d \theta \\
& =\int_{0}^{2 \pi}-\left.\frac{32}{15} \cos ^{3} \phi\right|_{0} ^{\pi / 4} d \theta \\
& =\int_{0}^{2 \pi}-\frac{32}{15}\left[\cos ^{3}(\pi / 4)-\cos ^{3}(0)\right] d \theta \\
& =\int_{0}^{2 \pi}-\frac{32}{15}\left[\frac{\sqrt{2}}{4}-1\right] d \theta \\
& =-\left.\frac{32}{15}\left[\frac{\sqrt{2}}{4}-1\right] \theta\right|_{0} ^{2 \pi} \\
& =-\frac{32}{15}\left[\frac{\sqrt{2}}{4}-1\right](2 \pi)
\end{aligned}
$$

9. Let C be the intersection of the cylinder $x^{2}+z^{2}=4$ with the plane $x+y=4$ and with counterclockwise orientation when viewed from the positive y-axis. Use Stokes' Theorem to convert the line integral

$$
\int_{C} x y d x+y d y+x z d z
$$

to a surface integral. Write your integral as an iterated integral in polar coordinates. Do not evaluate this integral.
Solution: By Stokes' Theorem:

$$
\int_{C} x y d x+y d y+x z d z=\iint_{\Sigma}(0 \mathbf{i}-z \mathbf{j}-x \mathbf{k}) \cdot \mathbf{n} d S
$$

where Σ is the part of the plane inside the cylinder with orientation forward and to the right. We parametrize Σ by

$$
\begin{gathered}
\mathbf{r}(r, \theta)=r \cos \theta \mathbf{i}+(4-r \cos \theta) \mathbf{j}+r \sin \theta \mathbf{k} \\
0 \leq \theta \leq 2 \pi, 0 \leq r \leq 2(\text { This is our } R)
\end{gathered}
$$

So then

$$
\begin{aligned}
\mathbf{r}_{r} & =\cos \theta \mathbf{i}-\cos \theta \mathbf{j}+\sin \theta \mathbf{k} \\
\mathbf{r}_{\theta} & =-r \sin \theta \mathbf{i}+r \sin \theta \mathbf{j}+r \cos \theta \mathbf{k} \\
\mathbf{r}_{r} \times \mathbf{r}_{\theta} & =-r \mathbf{i}-r \mathbf{j}+0 \mathbf{k}
\end{aligned}
$$

which is opposite of Σ 's orientation, thus:

$$
\begin{aligned}
\iint_{\Sigma}(0 \mathbf{i}-z \mathbf{j}-x \mathbf{k}) \cdot \mathbf{n} d S & =-\iint_{R}(0 \mathbf{i}-(r \sin \theta) \mathbf{j}-(r \cos \theta) \mathbf{k}) \cdot(-r \mathbf{i}-r \mathbf{j}+0 \mathbf{k}) d A \\
& =-\int_{0}^{2 \pi} \int_{0}^{2} r^{2} \sin \theta d r d \theta
\end{aligned}
$$

10. (a) Let C be the triangle in the $x y$-plane with corners $(0,0),(4,2)$ and $(0,6)$, oriented clockwise. [10 pts] By using Green's Theorem calculate the line integral $\int_{C} 3 x y d x+4 x^{2} d y$.
Solution: If R is the filled-in triangle inside C then, noting the orientation of C, by Green's Theorem:

$$
\begin{aligned}
\int_{C} 3 x y d x+4 x^{2} d y & =-\iint_{R} 8 x-3 x d A \\
& =-\iint_{R} 5 x d A \\
& =-\int_{0}^{4} \int_{\frac{1}{2} x}^{6-x} 5 x d y d x \\
& =-\left.\int_{0}^{4} 5 x y\right|_{\frac{1}{2} x} ^{6-x} d x \\
& =-\int_{0}^{4} 5 x(6-x)-5 x\left(\frac{1}{2} x\right) d x \\
& =-\int_{0}^{4}-\frac{15}{2} x^{2}+30 x d x \\
& =\frac{5}{2} x^{3}-\left.15 x^{2}\right|_{0} ^{4} \\
& =\frac{3}{2}(4)^{3}-15(4)^{2}
\end{aligned}
$$

(b) Evaluate $\int_{C} x^{2} y d s$ where C is the circle $x^{2}+y^{2}=4$.

Solution: We parametrize the curve by $\mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}$ for $0 \leq t \leq 2 \pi$. Then

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =-2 \sin t \mathbf{i}+2 \cos t \mathbf{j} \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =2
\end{aligned}
$$

and so

$$
\begin{aligned}
\int_{C} x^{2} y d s & =\int_{0}^{2 \pi}(2 \cos t)^{2}(2 \sin t)(2) d t \\
& =\int_{0}^{2 \pi} 16 \cos ^{2} t \sin t d t \\
& =-\left.\frac{16}{3} \cos ^{3} t\right|_{0} ^{2 \pi} \\
& =0
\end{aligned}
$$

