Math 241 Fall 2016 Final Exam Solutions Partial

4. Let $f(x, y, z)=x^{2} y+z^{2}$.
(a) Find the directional derivative at $(1,2,3)$ in the direction of the unit vector $\mathbf{u}=\mathbf{a} /\|\mathbf{a}\|$ where $\mathbf{a}=1 \mathbf{i}-1 \mathbf{j}+1 \mathbf{k}$.
Solution: We have:

$$
\mathbf{u}=\frac{1}{\sqrt{3}} \mathbf{i}-\frac{1}{\sqrt{3}} \mathbf{j}+\frac{1}{\sqrt{3}} \mathbf{k}
$$

and we have:

$$
\begin{aligned}
f_{x} & =2 x y \\
f_{y} & =x^{2} \\
f_{z} & =2 z
\end{aligned}
$$

and so:

$$
\begin{aligned}
D_{\mathbf{u}} f & =\frac{1}{\sqrt{3}}(2 x y)-\frac{1}{\sqrt{3}}\left(x^{2}\right)+\frac{1}{\sqrt{3}}(2 z) \\
D_{\mathbf{u}} f(1,2,3) & =\frac{1}{\sqrt{3}}(4)-\frac{1}{\sqrt{3}}(1)+\frac{1}{\sqrt{3}}(6)
\end{aligned}
$$

(b) Find the equation of the tangent plane to the level surface defined by $f(x, y, z)=5$ at the point $(2,1,-1)$.
Solution: We have:

$$
\begin{aligned}
\nabla f & =2 x y \mathbf{i}+x^{2} \mathbf{j}+2 z \mathbf{k} \\
\nabla f(2,1,-1) & =4 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}
\end{aligned}
$$

So the plane is:

$$
4(x-2)+4(y-1)-2(z+1)=0
$$

