Math 241 Fall 2017 Final Exam Solutions

1. (a) Find the cosine of the angle between the vectors $\mathbf{a}=2 \mathbf{i}-1 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{b}=0 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$. [5 pts] Simplify your answer as much as possible.
Solution:

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|} \\
& =\frac{(2)(0)+(-1)(4)+(3)(2)}{\sqrt{2^{2}+(-1)^{2}+3^{2}} \sqrt{0^{2}+4^{2}+2^{2}}} \\
& =\frac{2}{\sqrt{14} \sqrt{20}} \\
& =\frac{1}{\sqrt{70}}
\end{aligned}
$$

(b) Find the distance from the point $(3,1,-1)$ to the plane with equation $2 x-y-2 z=4$.

Simplify your answer as much as possible.
Solution:
We set:

$$
Q=(3,1,-1) \text { off the plane }
$$

and

$$
P=(2,0,0) \text { on the plane }
$$

Then we have

$$
\overline{P Q}=1 \mathbf{i}+1 \mathbf{j}-1 \mathbf{k}
$$

and

$$
\mathbf{N}=2 \mathbf{i}-1 \mathbf{j}-2 \mathbf{k}
$$

so that

$$
\operatorname{dist}=\frac{|\overline{P Q} \cdot \mathbf{N}|}{\|\mathbf{N}\|}=\frac{3}{\sqrt{(2)^{2}+(-1)^{2}+(-2)^{2}}}=1
$$

2. Find the equation of the line of intersection between the planes $x+4 z=1$ and $-x+2 y+3 z=5$. [20 pts]

Solution:

The direction vector for the line can be found by crossing the two planes' normal vectors:

$$
\begin{aligned}
\mathbf{L} & =(1 \mathbf{i}+0 \mathbf{j}+4 \mathbf{k}) \times(-1 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \\
& =-8 \mathbf{i}-7 \mathbf{j}+2 \mathbf{k}
\end{aligned}
$$

Since $x=1, z=0$ satisfies the first plane we can find $y=3$ for the second plane.
The parametric equations are then:

$$
\begin{aligned}
& x=1-8 t \\
& y=3-7 t \\
& z=0+2 t
\end{aligned}
$$

In vector form:

$$
\mathbf{r}(t)=(1-8 t) \mathbf{i}+(3-7 t) \mathbf{j}+(0+2 t) \mathbf{k}
$$

In symmetric form this would be:

$$
\frac{x-1}{-8}=\frac{y-3}{-7}=\frac{z}{2}
$$

3. The position of a particle at time $t \geq 0$ is given by $\mathbf{r}(t)=2 t \mathbf{i}+t^{2} \mathbf{j}-\frac{1}{3} t^{3} \mathbf{k}$.
(a) Find the length of the curve traced out by the particle in the time interval $0 \leq t \leq 3$.

Simplify your answer as much as possible.
Solution:
We have

$$
\begin{aligned}
& r^{\prime}(t)=2 \mathbf{i}+2 t \mathbf{j}-t^{2} \mathbf{k} \\
& \text { length }=\int_{0}^{3}\left\|2 \mathbf{i}+2 t \mathbf{j}-t^{2} \mathbf{k}\right\| d t \\
&=\int_{0}^{3} \sqrt{2+4 t^{2}+t^{4}} d t \\
&=\int_{0}^{3} t^{2}+2 d t \\
&=\frac{1}{3} t^{3}+\left.2 t\right|_{0} ^{3} \\
&=\frac{1}{3}(27)+2(3) \\
&=15
\end{aligned}
$$

(b) Find the the tangential component of acceleration.

Simplify your answer as much as possible.
Solution:

$$
\begin{aligned}
a_{\mathbf{T}} & =\frac{\mathbf{v} \cdot \mathbf{a}}{\|\mathbf{v}\|} \\
& =\frac{\left(2 \mathbf{i}+2 t \mathbf{j}-t^{2} \mathbf{k}\right) \cdot(0 \mathbf{i}+2 \mathbf{j}-2 t \mathbf{k})}{t^{2}+2} \\
& =\frac{4 t+2 t^{3}}{t^{2}+2} \\
& =2 t
\end{aligned}
$$

(c) Is the speed of the particle increasing or decreasing when $t=3$? Explain.

Solution:

Since speed equals $s(t)=t^{2}+2$ we have $s^{\prime}(t)=2 t$ and $s(3)=6>0$ so the particle is speeding up.
4. Parts (a) and (b) are independent problems.
(a) Let $w=f(x, y)$ where $x=e^{-s} \cos t$ and $y=e^{-s} \sin t$, and $f(x, y)$ is a function with continuous partial derivatives of first and second order. Compute both the partial derivatives w_{s} and w_{t} in terms of x, y, f_{x} and f_{y}.

Solution:

By the chain rule we have

$$
\begin{aligned}
w_{s} & =f_{x} \frac{\partial x}{\partial s}+f_{y} \frac{\partial y}{\partial s} \\
& =f_{x}\left(-e^{-s} \cos t\right)+f_{y}\left(-e^{-s} \sin t\right) \\
& =-x f_{x}-y f_{y} \\
w_{t} & =f_{x} \frac{\partial x}{\partial t}+f_{y} \frac{\partial y}{\partial t} \\
& =f_{x}\left(-e^{-s} \sin t\right)+f_{y}\left(e^{-s} \cos t\right) \\
& =-y f_{x}+x f_{y}
\end{aligned}
$$

(b) Find a unit vector perpendicular to the graph of $f(x, y)=x y+x y^{2}$ at the point where [10 pts] $x=1$ and $y=-2$.
Simplify your answer as much as possible.
Solution:
The graph of f is a level surface for

$$
g(x, y, z)=x y+x y^{2}-z
$$

so then

$$
\begin{aligned}
\nabla g & =\left(y+y^{2}\right) \mathbf{i}+(x+2 x y) \mathbf{j}-1 \mathbf{k} \\
\nabla g(1,-2, *) & =2 \mathbf{i}-2 \mathbf{j}-1 \mathbf{k}
\end{aligned}
$$

and so a unit vector is

$$
\frac{\nabla g(1,-2, *)}{\|\nabla g(1,-2, *)\|}=\frac{2 \mathbf{i}-2 \mathbf{j}-1 \mathbf{k}}{\|2 \mathbf{i}-2 \mathbf{j}-1 \mathbf{k}\|}=\frac{2}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}-\frac{1}{3} \mathbf{k}
$$

5. Consider the function $f(x, y)=3 x^{2}+2 y^{2}-8 y+1$. Find the maximum and minimum values of $[20 \mathrm{pts}]$ f on the region R of the $x y$-plane described by $x^{2}+y^{2} \leq 1$.

Solution:

First we have

$$
\begin{aligned}
& f_{x}=6 x \\
& f_{y}=4 y-8
\end{aligned}
$$

so the only critical point is at $(0,2)$ which is not in the domain.
On the edge we have $x^{2}=1-y^{2}$ so that

$$
f(y)=3\left(1-y^{2}\right)+2 y^{2}-8 y+1=-y^{2}-8 y+4 \text { for }-1 \leq y \leq 1
$$

Then $f^{\prime}(y)=-2 y-8$ which equals 0 at $y=4$, outside the domain, so we check

$$
\begin{aligned}
f(-1) & =13 \\
f(1) & =-3
\end{aligned}
$$

So the maximum is 13 and the minimum is -3 .
6. Parts (a) and (b) are independent problems.
(a) Set up a triple iterated integral that would compute the volume of the solid region under [10 pts]
the paraboloid $z=9-x^{2}-y^{2}$, above the plane $z=1$, and for $y \geq 0$.
Do not evaluate this integral.
Solution:
The paraboloid meets the plane when

$$
\begin{array}{r}
9-x^{2}-y^{2}=1 \\
x^{2}+y^{2}=8
\end{array}
$$

and so we have

$$
\text { volume }=\int_{0}^{\pi} \int_{0}^{\sqrt{8}} \int_{1}^{9-r^{2}} r d z d r d \theta
$$

(b) Set up a triple iterated integral that would determine the volume of the solid region below $z=x^{4}+y^{4}+4$ and above the triangular region on the $x y$-plane with vertices $(-2,0),(2,0)$, and $(0,2)$.
Do not evaluate this integral.
Solution:
Treating the triangular region as horizontally simple we have

$$
\text { volume }=\int_{0}^{2} \int_{y-2}^{2-y} \int_{0}^{x^{2}+y^{2}+4} 1 d z d x d y
$$

7. Use an appropriate change of variables to evaluate

$$
\iint_{R}(3 x+6 y)^{2} d A
$$

where R is the parallelogram enclosed by the lines $x-2 y=-2, x-2 y=2, \frac{1}{2} x+y=1$, and $\frac{1}{2} x+y=-1$.
Evaluate and simplify your answer as much as possible.

Solution:

If we set $u=x-2 y$ and $v=\frac{1}{2} x+y$ then our lines under the transformation are

$$
\begin{aligned}
& x-2 y=-2 \rightarrow u=-2 \\
& x-2 y=2 \rightarrow u=2 \\
& \frac{1}{2} x+y=1 \rightarrow v=1 \\
& \frac{1}{2} x+y=-1 \rightarrow v=-1
\end{aligned}
$$

The integrand is then $(3 x+6 y)^{2}=(6 v)^{2}=36 v^{2}$ and the Jacobian is:

$$
1 \div \operatorname{det}\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=1 \div \operatorname{det}\left[\begin{array}{cc}
1 & -2 \\
1 / 2 & 1
\end{array}\right] 1 \div 2=\frac{1}{2}
$$

and so we have

$$
\begin{aligned}
\iint_{R}(3 x+6 y)^{2} d A & =\iint_{S} 36 v^{2}\left|\frac{1}{2}\right| d A \\
& =\int_{-2}^{2} \int_{-1}^{1} 18 v^{2} d v d u \\
& =\left.\int_{-2}^{2} 6 v^{3}\right|_{-1} ^{1} d u \\
& =\int_{-2}^{2} 12 d u \\
& =\left.12 u\right|_{-2} 2 \\
& =48
\end{aligned}
$$

8. Parts (a) and (b) are independent problems.
(a) Let C be the clockwise curve consisting of the quarter-circle $x^{2}+y^{2}=4$ with $x, y \geq 0$ along with the line segment joining $(0,0)$ to $(0,2)$ and the line segment joining $(0,0)$ to $(2,0)$. Use Green's Theorem to evaluate $\int_{C} 2 x d x+x^{2} d y$.
Evaluate and simplify your answer as much as possible.
Solution:
By Green's Theorem if R is the quarter-disk then we have, including - for the orientation switch,

$$
\begin{aligned}
\int_{C} 2 x d x+x^{2} d y & =-\iint_{R} 2 x d A \\
& =-\int_{0}^{\pi / 2} \int_{0}^{2} 2 r^{2} \cos \theta d r d \theta \\
& =-\left.\int_{0}^{\pi / 2} \frac{2}{3} r^{3} \cos \theta\right|_{0} ^{2} d \theta \\
& =-\int_{0}^{\pi / 2} \frac{16}{3} \cos \theta d \theta \\
& =-\left.\frac{16}{3} \sin \theta\right|_{0} ^{\pi / 2}=-\frac{16}{3}
\end{aligned}
$$

(b) Let Σ be the part of the plane $2 x+y+3 z=12$ in the first octant. If the mass density at [10 pts] any point is given by $f(x, y, z)=x z$, set up a double iterated integral for the mass of Σ.
Do not evaluate this integral.
Solution:
The surface can be parametrized by

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\left(4-\frac{2}{3} x-\frac{1}{3} y\right) \mathbf{j} \text { with } 0 \leq x \leq 6 \text { and } 0 \leq y \leq 12-2 x(\text { this is } R)
$$

Therefore we have

$$
\begin{aligned}
\mathbf{r}_{x} & =1 \mathbf{i}+0 \mathbf{j}-\frac{2}{3} \mathbf{k} \\
\mathbf{r}_{y} & =0 \mathbf{i}+1 \mathbf{j}-\frac{1}{3} \mathbf{k} \\
\mathbf{r}_{x} \times \mathbf{r}_{y} & =\frac{2}{3} \mathbf{i}+\frac{1}{3} \mathbf{j}+1 \mathbf{j} \\
\left\|\mathbf{r}_{x} \times \mathbf{r}_{y}\right\| & =\sqrt{\frac{2}{9}+\frac{1}{9}+1}
\end{aligned}
$$

and so

$$
\text { mass }=\iint_{\Sigma} x z d S=\iint_{R} x\left(4-\frac{2}{3} x-\frac{1}{3} y\right) d A=\int_{0}^{6} \int_{0}^{12-2 x} x\left(4-\frac{2}{3} x-\frac{1}{3} y\right) d y d x
$$

9. Parts (a) and (b) are independent problems.
(a) Let C be the intersection of the cylinder $x^{2}+z^{2}=4$ with the plane $y+z=8$ and with counterclockwise orientation when viewed from above. Use Stokes' Theorem to convert the line integral

$$
\int_{C} x^{2} z d x+x d y+y z d z
$$

to a surface integral. Parametrize the surface to obtain a double iterated integral.

Do not evaluate this integral.

Solution:

By Stokes' Theorem we have

$$
\int_{C} x^{2} z d x+x d y+y z d z=\iint_{\Sigma}\left(z \mathbf{i}+x^{2} \mathbf{j}+1 \mathbf{k}\right) \cdot \mathbf{n} d S
$$

where Σ is the part of the plane $y+z=8$ inside the cylinder with induced orientation.

$$
\mathbf{r}(r, \theta)=r \cos \theta \mathbf{i}+(8-r \sin \theta) \mathbf{j}+r \sin \theta \mathbf{k} \text { with } 0 \leq \theta \leq 2 \pi \text { and } 0 \leq r \leq 2(\text { this is } R)
$$

Therefore we have

$$
\begin{aligned}
\mathbf{r}_{r} & =\cos \theta \mathbf{i}-\sin \theta \mathbf{j}+\sin \theta \mathbf{k} \\
\mathbf{r}_{y} & =-r \sin \theta \mathbf{i}-r \cos \theta \mathbf{j}+r \cos \theta \mathbf{k} \\
\mathbf{r}_{x} \times \mathbf{r}_{y} & =0 \mathbf{i}-r \mathbf{j}-r \mathbf{k}
\end{aligned}
$$

This orientation is opposite of the induced orientation and so

$$
\begin{aligned}
\iint_{\Sigma}\left(z \mathbf{i}+x^{2} \mathbf{j}+1 \mathbf{k}\right) \cdot \mathbf{n} d S & =-\iint_{R}\left[r \sin \theta \mathbf{i}+r^{2} \cos ^{2} \theta \mathbf{j}+1 \mathbf{k}\right] \cdot[0 \mathbf{i}-r \mathbf{j}-r \mathbf{k}] d A \\
& =-\int_{0}^{2 \pi} \int_{0}^{2}-r^{3} \cos ^{2} \theta-r d r d \theta
\end{aligned}
$$

(b) Evaluate $\iint_{\Sigma}(2 x \mathbf{i}+3 x \mathbf{j}-5 z \mathbf{k}) \cdot \mathbf{n} d S$ where Σ is the sphere $x^{2}+y^{2}+z^{2}=9$ with \mathbf{n} the unit normal vector pointing inwards. That is, the sphere is oriented inwards.
Evaluate and simplify your answer as much as possible.

Solution:

By the Divergence Theorem and considering the orientation of Σ treated as the surface (boundary) surrounding D, the sphere of radius 3 centered at the origin, we have

$$
\iint_{\Sigma}(2 x \mathbf{i}+3 x \mathbf{j}-5 z \mathbf{k}) \cdot \mathbf{n} d S=-\iiint_{D} 2+0-5 d V=3 \operatorname{vol}(D)=3\left(\frac{4}{3} \pi(3)^{3}\right)=108 \pi
$$

