Math 241 Spring 2017 Final Exam Solution

1. (a) Find $\cos \theta$ where θ is the angle between the vectors $\mathbf{a}=2 \mathbf{i}+1 \mathbf{j}-3 \mathbf{k}$ and $\mathbf{b}=1 \mathbf{i}+5 \mathbf{j}-4 \mathbf{k}$. [8 pts]

Solution:
We have:

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}=\frac{(2)(1)+(1)(5)+(-3)(-4)}{\sqrt{2^{2}+1^{2}+(-3)^{2}} \sqrt{1^{2}+5^{2}+(-4)^{2}}}
$$

(b) Find the distance between the point $(5,12,-13)$ and the plane containing the point $(1,1,1),(7,-1,-1)$, and $(0,3,0)$.
Solution: To find a normal vector for the plane we first find two vectors parallel to the plane and cross them. To find a we go from the first point to the second and to find \mathbf{b} we go from the first point to the third:

$$
\begin{aligned}
\mathbf{a} & =6 \mathbf{i}-2 \mathbf{j}-2 \mathbf{k} \\
\mathbf{b} & =-1 \mathbf{i}+2 \mathbf{j}-1 \mathbf{k} \\
\mathbf{N}=\mathbf{a} \times \mathbf{b} & =6 \mathbf{i}+8 \mathbf{j}+10 \mathbf{k}
\end{aligned}
$$

Then if we put $P=(1,1,1)$ and $Q=(5,12,-13)$ then $\mathbf{P Q}=4 \mathbf{i}+11 \mathbf{j}-14 \mathbf{k}$ and the distance is

$$
\frac{|\mathbf{P Q} \cdot \mathbf{N}|}{\|\mathbf{N}\|}=\frac{|(4)(6)+(11)(8)+(-14)(10)|}{\sqrt{6^{2}+8^{2}+10^{2}}}
$$

2. Find the length of the curve $\mathbf{r}(t)=\frac{1}{2} t^{2} \mathbf{i}+\ln (t) \mathbf{j}+t \sqrt{2} \mathbf{k}$ from the point $\left(\frac{1}{2}, 0, \sqrt{2}\right)$ to the point [20 pts] $(2, \ln (2), 2 \sqrt{2})$.
Solution: The portion of the curve is from $t=1$ to $t=2$. We have:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =t \mathbf{i}+\frac{1}{t} \mathbf{j}+\sqrt{2} \mathbf{k} \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{t^{2}+\left(\frac{1}{t}\right)^{2}+(\sqrt{2})^{2}} \\
& =\sqrt{t^{2}+\frac{1}{t^{2}}+2} \\
& =\sqrt{\left(t+\frac{1}{t}\right)^{2}} \\
& =t+\frac{1}{t}
\end{aligned}
$$

and so

$$
\begin{aligned}
\text { Length } & =\int_{1}^{2} t+\frac{1}{t} d t \\
& =\frac{1}{2} t^{2}+\left.\ln |t|\right|_{1} ^{2} \\
& =\left[\frac{1}{2}(2)^{2}+\ln 2\right]-\left[\frac{1}{2}(1)^{2}+\ln 1\right]
\end{aligned}
$$

3. A particle with initial position $(0,0,1)$ has velocity $\mathbf{v}(t)=\frac{3}{2}(t+1)^{1 / 2} \mathbf{i}+e^{-t} \mathbf{j}+\frac{1}{t+1} \mathbf{k}$ for any time t. Find the particle's acceleration and postition vectors, $\mathbf{a}(t)$ and $\mathbf{r}(t)$ at any time t.
Solution: First the acceleration:

$$
\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\frac{3}{4}(t+1)^{-1 / 2} \mathbf{i}-e^{-t} \mathbf{j}-\frac{1}{(t+1)^{2}} \mathbf{k}
$$

Next:

$$
\begin{aligned}
\mathbf{r}(t) & =\int \mathbf{v}(t) d t \\
& =(t+1)^{3 / 2} \mathbf{i}-e^{-t} \mathbf{j}+\ln |t+1| \mathbf{k}+\mathbf{C} \\
\mathbf{r}(0)=0 \mathbf{i}+0 \mathbf{j}+1 \mathbf{k} & =(0+1)^{3 / 2} \mathbf{i}-e^{-0} \mathbf{j}+\ln |0+1| \mathbf{k}+\mathbf{C} \\
0 \mathbf{i}+0 \mathbf{j}+1 \mathbf{k} & =1 \mathbf{i}-1 \mathbf{j}+0 \mathbf{k}+\mathbf{C} \\
\mathbf{C} & =-1 \mathbf{i}+1 \mathbf{j}+1 \mathbf{k}
\end{aligned}
$$

So that

$$
\mathbf{r}(t)=\left((t+1)^{3 / 2}-1\right) \mathbf{i}+\left(1-e^{-t}\right) \mathbf{j}+(\ln (t+1)+1) \mathbf{k}
$$

4. (a) Show that the line with parametrization $\mathbf{r}(t)=(2+t) \mathbf{i}+(1+t) \mathbf{j}+\left(\frac{1}{2}-\frac{1}{2} t\right) \mathbf{k}$ does not [10 pts] intersect the plane $x+2 y+6 z=10$.
Solution: On the line we have $x=2+t, y=1+t$ and $z=\frac{1}{2}-\frac{1}{2} t$. For this to intersect the plane we would have:

$$
\begin{aligned}
x+2 y+6 z & =10 \\
(2+t)+2(1+t)+6\left(\frac{1}{2}-\frac{1}{2} t\right) & =10 \\
2+t+2+2 t+3-3 t & =10 \\
7 & =10
\end{aligned}
$$

Therefore the line does not intersect the plane.
(b) Find the symmetric equation of the line containing the points $(1,2,0)$ and $(3,6,0)$.

Solution: The direction vector is

$$
\mathbf{L}=2 \mathbf{i}+4 \mathbf{j}+0 \mathbf{k}
$$

and so the final solution is:

$$
\frac{x-1}{2}=\frac{y-2}{4} \text { and } z=0
$$

5. Find and categorize all local maximum and minimum values and saddle points of:

$$
f(x, y)=3 x y-x^{2} y-x y^{2}
$$

Solution:

We have

$$
\begin{gathered}
f_{x}=3 y-2 x y-y^{2}=y(3-2 x-y) \\
f_{y}=3 x-x^{2}-2 x y
\end{gathered}
$$

The first tells us $y=0$ or $y=3-2 x$.
In the first case the second then tells us $x=0,3$ yielding points $(0,0)$ and $(3,0)$.
In the second case the second then tells us that $x=0,1$ yielding points $(0,3)$ and $(1,1)$.
Next

$$
D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=(-2 y)(-2 x)-(3-2 x-2 y)^{2}
$$

So checking our points:
$D(0,0)=-$ so it's a saddle.
$D(3,0)=-$ so it's a saddle.
$D(0,3)=-$ so it's a saddle.
$D(1,1)=+$ and $f_{x x}(1,1)=-$ so it's a relative maximum.
6. A mountain's altitude is given by $h(x, y)=2000-0.01 x^{2}-0.005 y^{2}$. You are standing on the mountain at the point $(50,100,1925)$.
(a) You begin to walk in the direction of $\mathbf{a}=3 \mathbf{i}-2 \mathbf{j}$. Will your altitude be increasing or $[10 \mathrm{pts}]$ decreasing?
Solution: First we have:

$$
\mathbf{u}=\frac{\mathbf{a}}{\|\mathbf{a}\|}=\frac{3}{\sqrt{13}} \mathbf{i}-\frac{2}{\sqrt{13}} \mathbf{j}
$$

Next

$$
h_{x}=-0.02 x \text { and } h_{y}=-0.01 y
$$

so that

$$
D_{\mathbf{u}} h(50,100)=\frac{3}{\sqrt{13}}(-0.02(50))-\frac{2}{\sqrt{13}}(-0.01(100))=\frac{3(-1)+2(1)}{\sqrt{13}}<0
$$

so my altitude is decreasing.
(b) In which direction should you move so that your altitude increases the most rapidly? What is this rate of change?
Solution: We should head in the direction:

$$
\begin{aligned}
\nabla h & =-0.02 x \mathbf{i}-0.01 y \mathbf{j} \\
\nabla h(50,100) & =-1 \mathbf{i}-1 \mathbf{j}
\end{aligned}
$$

and the altitude will increase by

$$
\|\nabla h(50,100)\|=\sqrt{(-1)^{2}+(-1)^{2}}
$$

7. (a) Find the volume of the solid enclosed by the cylinder $x^{2}+y^{2}=4$ and between the planes $y+z=2$ and $z=0$.

Solution:

The solid is under the $z=2-y$ and above $z=0$ within the region R which is the disk of radius 2 centered at the origin.
As a double integral

$$
\begin{aligned}
\text { Volume } & =\iint_{R} 2-y d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2}(2-r \sin \theta) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} 2 r-r^{2} \sin \theta d r d \theta \\
& =\int_{0}^{2 \pi} r^{2}-\left.\frac{1}{3} r^{3} \sin \theta\right|_{0} ^{2} d \theta \\
& =\int_{0}^{2 \pi} 4-\frac{8}{3} \sin \theta d \theta \\
& =4 \theta+\left.\frac{8}{3} \cos \theta\right|_{0} ^{2 \pi} \\
& =\left[4(2 \pi)+\frac{8}{3}(1)\right]-\left[0+\frac{8}{3}(1)\right]
\end{aligned}
$$

(b) Let D be the solid between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ in the first octant. Parametrize the following integral as an iterated integral in spherical coordinates but do not evaluate:

$$
\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d V
$$

Solution: The solution is

$$
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{1}^{2} \rho \rho^{2} \sin \phi d \rho d \phi d \theta
$$

8. Evaluate the integral:

Solution:

We need to change the order of integration. Picture omitted but the result is:

$$
\begin{aligned}
\int_{0}^{4} \int_{\sqrt{x}}^{2} \frac{1}{y^{3}+1} d y d x & =\int_{0}^{2} \int_{0}^{y^{2}} \frac{1}{y^{3}+1} d x d y \\
& =\left.\int_{0}^{2} \frac{x}{y^{3}+1}\right|_{0} ^{y^{2}} d y \\
& =\int_{0}^{2} \frac{y^{2}}{y^{3}+1} d y \\
& =\left.\frac{1}{3} \ln \left|y^{3}+1\right|\right|_{0} ^{2} \\
& =\frac{1}{3} \ln (9)-\frac{1}{3} \ln (1)
\end{aligned}
$$

9. Let C be the intersection of the cylinder $(x-1)^{2}+y^{2}=1$ with the plane $x+y+z=4$ and with counterclockwise orientation when viewed from above. Use Stokes' Theorem to convert the line integral

$$
\int_{C} x y d x+y d y+x z d z
$$

to a surface integral. Parametrize the surface integral as an iterated integral in polar coordinates. Do not evaluate this integral.
Solution: The vector field is

$$
\mathbf{F}(x, y, z)=x y \mathbf{i}+y \mathbf{j}+x z \mathbf{k}
$$

so that

$$
\nabla \times F=(0-0) \mathbf{i}-(z-0) \mathbf{j}+(0-x) \mathbf{k}=0 \mathbf{i}-z \mathbf{j}-x \mathbf{k}
$$

and so

$$
\int_{C} x y d x+y d y+x z d z=\iint_{\Sigma}(0 \mathbf{i}-z \mathbf{j}-x \mathbf{k}) \cdot \mathbf{n} d S
$$

where Σ is the part of the plane $x+y+z=4$ inside the cylinder with "upwards" orientation. We parametrize Σ :

$$
\begin{gathered}
\mathbf{r}(r, \theta)=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}+(4-r \cos \theta-r \sin \theta) \mathbf{k} \\
\quad \text { with }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \text { and } 0 \leq r \leq 2 \cos \theta
\end{gathered}
$$

Then:

$$
\begin{aligned}
\mathbf{r}_{r} & =\cos \theta \mathbf{i}+\sin \theta \mathbf{j}+(-\cos \theta-\sin \theta) \mathbf{k} \\
\mathbf{r}_{\theta} & =-r \sin \theta \mathbf{i}+r \cos \theta \mathbf{j}+(r \sin \theta-r \cos \theta) \mathbf{k} \\
\mathbf{r}_{r} \times \mathbf{r}_{\theta} & =r \mathbf{i}+r \mathbf{j}+r \mathbf{k}
\end{aligned}
$$

This cross product matches Σ 's orientation and so:

$$
\begin{aligned}
\iint_{\Sigma}(0 \mathbf{i}-z \mathbf{j}-x \mathbf{k}) \cdot \mathbf{n} d S & =+\iint_{R}[0 \mathbf{i}-(4-r \cos \theta-r \sin \theta) \mathbf{j}-(r \cos \theta) \mathbf{k}] \cdot[r \mathbf{i}+r \mathbf{j}+r \mathbf{k}] d A \\
& =\int_{\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta}-r(4-r \cos \theta-r \sin \theta)-r(r \cos \theta) d r d \theta
\end{aligned}
$$

10. (a) Use the Fundamental Theorem of Line Integrals to evaluate $\int 2 x d x-z d y+(1-y) d z \quad[10 \mathrm{pts}]$ where C is the curve with parametrization $\mathbf{r}(t)=\sqrt{t+1} \mathbf{i}+\frac{{ }^{C}}{t+1} \mathbf{j}+e^{t} \mathbf{k}$ for $0 \leq t \leq 3$.

Solution:

The potential function is $f(x, y, z)=x^{2}-y z+z$.
The start point is $\mathbf{r}(0)=1 \mathbf{i}+1 \mathbf{j}+1 \mathbf{k}$ or $(1,1,1)$.
The end point is $\mathbf{r}(3)=2 \mathbf{i}+\frac{1}{4} \mathbf{j}+e^{3} \mathbf{k}$ or $\left(2,1 / 4, e^{3}\right)$.
Therefore

$$
\begin{aligned}
\int_{C} 2 x d x-z d y+(1-y) d z & =f\left(2,1 / 4, e^{3}\right)-f(1,1,1) \\
& =\left[2^{2}-\left(e^{3}\right)(1 / 4)+e^{3}\right]-\left[1^{2}-(1)(1)+1\right]
\end{aligned}
$$

(b) Use the Divergence Theorem to evaluate $\iint_{\Sigma}(2 x \mathbf{i}+3 y \mathbf{j}+3 z \mathbf{k}) \cdot \mathbf{n} d S$ where Σ is the [10 pts] sphere $x^{2}+y^{2}+z^{2}=5$ oriented inwards. That is, the unit normal vector \mathbf{n} on Σ is directed inwards.
Solution: We see that Σ is the boundary of D, the solid sphere. Because of the inwards orientation we have:

$$
\begin{aligned}
\iint_{\Sigma}(2 x \mathbf{i}+3 y \mathbf{j}+3 z \mathbf{k}) \cdot \mathbf{n} d S & =-\iiint_{D} 2+3+3 d V \\
& =-8 \iiint_{1} d V \\
& =-8(\text { Volume of D) } \\
& =-8\left(\frac{4}{3} \pi(\sqrt{5})^{3}\right)
\end{aligned}
$$

