Math 241 Fall 2018 Final Exam Solution

1. Parts (a) and (b) are independent.
(a) Use the dot product to show that the three points $A=(-2,3,-4), B=(0,11,-1)$, and $C=(1,10,-5)$ form a right triangle. Then find the length of the hypotenuse.
Solution: We have:

$$
\begin{aligned}
& \overline{A B}=2 \mathbf{i}+8 \mathbf{j}+3 \mathbf{k} \\
& \overline{A C}=3 \mathbf{i}+7 \mathbf{j}-1 \mathbf{k} \\
& \overline{B C}=1 \mathbf{i}-1 \mathbf{j}-4 \mathbf{k}
\end{aligned}
$$

And so:

$$
\begin{aligned}
& \overline{A B} \cdot \overline{A C} \neq 0 \\
& \overline{A B} \cdot \overline{B C} \neq 0 \\
& \overline{A C} \cdot \overline{B C}=0
\end{aligned}
$$

So we have a right triangle. The length of the hypotenuse is then

$$
|A B|=\sqrt{2^{2}+8^{2}+3^{2}}
$$

(b) Find the distance between the point $Q=(-2,1,3)$ and the line $x=2, \frac{y+3}{-2}=z-4$.

Solution: The point $P=(2,-3,4)$ is on the line and $\mathbf{L}=0 \mathbf{i}-2 \mathbf{j}+1 \mathbf{k}$. We have $\overline{P Q}=-4 \mathbf{i}+4 \mathbf{j}-1 \mathbf{k}$ so that

$$
\begin{aligned}
\operatorname{dist} & =\frac{\|\overline{P Q} \times \mathbf{L}\|}{\|\mathbf{L}\|} \\
& =\frac{\|2 \mathbf{i}+4 \mathbf{j}+8 \mathbf{k}\|}{\|0 \mathbf{i}-2 \mathbf{j}+1 \mathbf{k}\|} \\
& =\frac{\sqrt{4+16+64}}{\sqrt{0+4+1}}
\end{aligned}
$$

2. Parts (a) and (b) are independent.
(a) An 80 pound force and a 50 pound force are applied to an object at the same point with [10 pts] an angle of $\frac{\pi}{6}$ between them. Find the magnitude of the resultant force on the object.
Solution: If we put the object at the origin and the 50 lb force on the positive x axis and the 801 b force in the first quadrant then $\mathbf{F}_{1}=50 \mathbf{i}+0 \mathbf{j}$ and $\mathbf{F}_{2}=80 \cos (p i / 6) \mathbf{i}+80 \sin (\pi / 6) \mathbf{j}=$ $40 \sqrt{3} \mathbf{i}+40 \mathbf{j}$ and so

$$
\begin{equation*}
\left\|\mathbf{F}_{1}+\mathbf{F}_{2}\right\|=\sqrt{(50+40 \sqrt{3})^{2}+(40)^{2}} \tag{10pts}
\end{equation*}
$$

(b) Show that the two lines $\mathbf{r}_{1}(t)=(t+1) \mathbf{i}+2 t \mathbf{j}+3 \mathbf{k}$ and $\mathbf{r}_{2}(s)=s \mathbf{i}+(4-s) \mathbf{j}+(s+1) \mathbf{k}$ intersect and are not parallel, then find the equation of the plane containing them.
Solution: The lines meet when $t+1=s, 2 t=4-s$ and $3=s+1$. The last gives $s=2$ and so $t=1$.
Noting $\mathbf{r}_{1}(1)=2 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ they meet at $(2,2,3)$.
The vectors are $\mathbf{L}_{1}=1 \mathbf{i}+2 \mathbf{j}+0 \mathbf{k}$ and $\mathbf{L}_{2}=1 \mathbf{i}-1 \mathbf{j}+1 \mathbf{k}$ and these are not multiples so the lines are not parallel.
We use $\mathbf{n}=\mathbf{L}_{1} \times \mathbf{L}_{2}=2 \mathbf{i}-1 \mathbf{j}-3 \mathbf{k}$ and so the plane equation is

$$
2(x-2)-1(y-2)-3(z-3)=0
$$

3. Consider the curve C parametrized by $\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \sin t \mathbf{j}$.
(a) Find the tangent vector $\mathbf{T}(t)$. Simplify.

Solution: We have:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left(e^{t} \cos t-e^{t} \sin t\right) \mathbf{i}+\left(e^{t} \sin t+e^{t} \cos t\right) \mathbf{j} \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{e^{2 t} \cos ^{2} t-2 e^{2 t} \sin t \cos t+e^{2 t} \sin ^{2} t+e^{2 t} \cos ^{2} t+2 e^{2 t} \sin t \cos t+e^{2 t} \sin ^{2} t} \\
& =\sqrt{2 e^{2 t}} \\
& =e^{t} \sqrt{2}
\end{aligned}
$$

and so

$$
\mathbf{T}(t)=\frac{1}{\sqrt{2}}(\cos t-\sin t) \mathbf{i}+\frac{1}{\sqrt{2}}(\sin t+\cos t) \mathbf{j}
$$

(b) Find the normal vector $\mathbf{N}(t)$.

Solution: We have:

$$
\begin{aligned}
\mathbf{T}^{\prime}(t) & =-\frac{1}{\sqrt{2}}(-\sin t-\cos t) \mathbf{i}+\frac{1}{\sqrt{2}}(\cos t-\sin t) \mathbf{j} \\
\left\|\mathbf{T}^{\prime}(t)\right\| & =\sqrt{\frac{1}{2}\left(\sin ^{2} t+2 \sin t \cos t+\cos ^{2} t\right)+\frac{1}{2}\left(\cos ^{2} t-2 \sin t \cos t+\sin ^{2} t\right)} \\
& =1
\end{aligned}
$$

and so

$$
\mathbf{N}(t)=-\frac{1}{\sqrt{2}}(-\sin t-\cos t) \mathbf{i}+\frac{1}{\sqrt{2}}(\cos t-\sin t) \mathbf{j}
$$

4. Let C be the curve defined as the portion of the parabola $y=x^{2}$ in the plane $z=-2$ between the points $(2,4,-2)$ and $(3,9,-2)$.
(a) Find a parametrization of C.

Solution: We have $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}-2 \mathbf{k}$ for $2 \leq t \leq 3$.
(b) Set up the iterated integral that computes the length of C. Do not evaluate the integral! [10 pts] Solution: We have

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =1 \mathbf{i}+2 t \mathbf{j}+0 \mathbf{k} \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{1+4 t^{2}} \\
\text { Length } & =\int_{2}^{3} \sqrt{1+4 t^{2}} d t
\end{aligned}
$$

5. Use Lagrange Multipliers to find the extreme values of $f(x, y)=3 x-y$ subject to the constraint [20 pts] $x^{2}+2 y^{2}=1$. You may assume these values exist.
Solution: We set $g(x, y)=x^{2}+2 y^{2}$ and then solve the system

$$
\begin{aligned}
3 & =\lambda 2 x \\
-1 & =\lambda 4 y \\
x^{2}+2 y^{2} & =1
\end{aligned}
$$

We can't have $x=0$ or $y=0$ since these would contradict the first and second, therefore the first tells us $\lambda=\frac{3}{2 x}$ and the second tells us $\lambda=-\frac{1}{4 y}$. Thus

$$
\begin{aligned}
\frac{3}{2 x} & =-\frac{1}{4 y} \\
12 y & =-2 x \\
x & =-6 y
\end{aligned}
$$

Plugging this into the third tells us

$$
\begin{aligned}
36 y^{2}+2 y^{2} & =1 \\
y & = \pm 1 / \sqrt{38}
\end{aligned}
$$

This yields the points $(-6 / \sqrt{38}, 1 / \sqrt{38})$ and $(6 / \sqrt{38},-1 / \sqrt{38})$. Then:

$$
\begin{aligned}
& f(-6 / \sqrt{38}, 1 / \sqrt{38})=-19 / \sqrt{38} \operatorname{Min} \\
& f(6 / \sqrt{38},-1 / \sqrt{38})=19 / \sqrt{38} \operatorname{Max}
\end{aligned}
$$

6. If $f(x, y)=x^{2} y+x y+y^{3}$ use tangent plane approximation at $(1,2)$ to approximate $f(0.95,2.1)$. [20 pts] Solution: We have

$$
\begin{aligned}
& f_{x}=2 x y+y \\
& f_{y}=x^{2}+x+3 y^{2}
\end{aligned}
$$

and so

$$
\begin{aligned}
f(1,2) & =12 \\
f_{x}(1,2) & =6 \\
f_{y}(1,2) & =14
\end{aligned}
$$

Therefore

$$
\begin{aligned}
f(0.95,2.1) & \approx f(1,2)+f_{x}(1,2)(0.95-1)+f_{y}(1,2)(2.1-2) \\
& \approx 12+6(0.95-1)+14(2.1-2)
\end{aligned}
$$

7. Let D be the solid that lies inside the sphere $x^{2}+y^{2}+z^{2}=2$ and outside the cylinder $x^{2}+y^{2}=1$.
(a) Set up an iterated triple integral in spherical coordinates that evaluates the volume of D. [10 pts] Do not evaluate the integral!
Solution: In spherical the equations are $\rho=\sqrt{2}$ and $\rho^{2} \sin ^{2} \phi=1$ (or $\rho \sin \phi=1$ or $\rho=\csc \phi$) respectively. These meet when $\sqrt{2} \sin \phi=1$ or $\phi=\frac{\pi}{4}, \frac{3 \pi}{4}$. Therefore the volume is given by

$$
\int_{0}^{2 \pi} \int_{\pi / 4}^{3 \pi / 4} \int_{\csc \phi}^{\sqrt{2}} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(b) Set up an iterated triple integral in cylindrical coordinates that evaluates $\iiint_{D} x^{2} d V$.

Do not evaluate the integral!
Solution: In cylindrical the equations of the sphere yields $z= \pm \sqrt{2-r^{2}}$ and so:

$$
\iiint_{D} x^{2} d V=\int_{0}^{2 \pi} \int_{1}^{\sqrt{2}} \int_{-\sqrt{2-r^{2}}}^{+\sqrt{2-r^{2}}}(r \cos \theta)^{2} r d z d r d \theta
$$

8. Let R be the region enclosed by the ellipse given by $9 x^{2}+y^{2}=9$. Using an appropriate change [20 pts] of variables, evaluate $\iint_{R} x^{2} d A$. Make sure you specify the change of variables, and draw the new region. Evaluate the integral!
Solution: Set $u=3 x$ and $v=y$ and then the ellipse becomes $u^{2}+v^{2}=9$. We have $x=\frac{1}{3} u$ and $y=v$ and so the Jacobian of the change of variables is

$$
\left|\begin{array}{cc}
1 / 3 & 0 \\
0 & 1
\end{array}\right|=1 / 3
$$

and so:

$$
\iint_{R} x^{2} d A=\iint_{S} \frac{1}{9} u^{2}|1 / 3| d A
$$

We rewrite this in polar:

$$
\begin{aligned}
\iint_{S} \frac{1}{9} u^{2}|1 / 3| d A & =\frac{1}{27} \int_{0}^{2 \pi} \int_{0}^{3} r^{2} \cos ^{2} \theta r d r d \theta \\
& =\left.\frac{1}{27} \int_{0}^{2 \pi} \frac{1}{4} r^{4} \cos ^{2} \theta\right|_{0} ^{3} d \theta \\
& =\frac{3}{4} \int_{0}^{2 \pi} \cos ^{2} \theta d \theta \\
& =\frac{3}{4} \int_{0}^{2 \pi} \frac{1}{2}(1+\cos (2 \theta)) \theta d \theta \\
& =\left.\frac{3}{8}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)\right|_{0} ^{2 \pi} \\
& =\frac{3}{8}(2 \pi)
\end{aligned}
$$

9. Let Σ be the portion of the plane $z=9-x$ inside the cylinder $r=2 \cos \theta$. Let R be the edge of Σ with counterclockwise orientation when viewed from above. Use Stokes' Theorem to rewrite the integral $\int_{C} 2 x d x+y z d y+x^{2} z^{2} d z$ as a surface integral, parametrize the surface and then proceed until you have an iterated double integral. Do not evaluate the integral!
Solution: Stokes' Theorem tells us that

$$
\int_{C} 2 x d x+y z d y+x^{2} z^{2} d z=\iint_{\Sigma}\left[(0-y) \mathbf{i}-\left(2 x z^{2}-0\right) \mathbf{j}+(0-0) \mathbf{k}\right] \cdot \mathbf{n} d S
$$

where Σ is the part of the plane inside the cylinder with upwards orientation. We parametrize Σ as:

$$
\begin{gathered}
\mathbf{r}(r, \theta)=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}+(9-r \cos \theta) \mathbf{k} \\
-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \\
0 \leq r \leq 2 \cos \theta
\end{gathered}
$$

Then

$$
\begin{aligned}
\mathbf{r}_{r} & =\cos \theta \mathbf{i}+\sin \theta \mathbf{j}-\cos \theta \mathbf{k} \\
\mathbf{r}_{\theta} & =-r \sin \theta \mathbf{i}+r \cos \theta \mathbf{j}+r \sin \theta \mathbf{k} \\
\mathbf{r}_{r} \times \mathbf{r}_{\theta} & =r \mathbf{i}-0 \mathbf{j}+r \mathbf{k}
\end{aligned}
$$

Since this matches Σ 's orientation the integral becomes

$$
\begin{aligned}
\iint_{\Sigma}[(0-y) \mathbf{i} & \left.-\left(2 x z^{2}-0\right) \mathbf{j}+(0-0) \mathbf{k}\right] \cdot \mathbf{n} d S \\
& =+\iint_{R}\left[-r \sin \theta \mathbf{i}-2(r \cos \theta)(9-r \cos \theta)^{2} \mathbf{j}+0 \mathbf{k}\right] \cdot[r \mathbf{i}-0 \mathbf{j}+r \mathbf{k}] d A \\
& =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta}-r^{2} \sin \theta d r d \theta
\end{aligned}
$$

10. Parts (a) and (b) are independent.
(a) Use Green's Theorem to evaluate $\int_{C} x y d x+x d y$ where C is the triangle with vertices [10 pts] $(0,0),(3,0)$, and $(3,6)$, oriented clockwise. Evaluate the integral!
Solution: If R is the region inside the triangle then because of the orientation we have

$$
\begin{aligned}
\int_{c} x y d x+x d y & =-\iint_{R} 1-x d A \\
& =-\int_{0}^{3} \int_{0}^{2 x} 1-x d y d x \\
& =-\int_{0}^{3} y-\left.x y\right|_{0} ^{2 x} d x \\
& =-\int_{0}^{3} 2 x-x(2 x) d x \\
& =-\int_{0}^{3} x^{2}-\left.\frac{2}{3} x^{3}\right|_{0} ^{3} \\
& =-\left(3^{2}-\frac{2}{3}(3)^{3}\right)
\end{aligned}
$$

(b) Let Σ be the portion of the paraboloid $z=16-x^{2}-y^{2}$ restricted by $0 \leq x \leq 2$ and $0 \leq y \leq 3$. Write down an iterated double integral for the surface area of Σ. Do not evaluate the integral!
Solution: The surface is parametrized by

$$
\begin{gathered}
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+\left(16-x^{2}-y^{2}\right) \mathbf{k} \\
0 \leq x \leq 2 \\
0 \leq y \leq 3
\end{gathered}
$$

So we have

$$
\begin{aligned}
\mathbf{r}_{x} & =1 \mathbf{i}+0 \mathbf{j}-2 x \mathbf{k} \\
\mathbf{r}_{y} & =0 \mathbf{i}+1 \mathbf{j}-2 y \mathbf{k} \\
\mathbf{r}_{x} \times \mathbf{r}_{y} & =2 x \mathbf{i}+2 y \mathbf{j}+1 \mathbf{k} \\
\left\|\mathbf{r}_{x} \times \mathbf{r}_{y}\right\| & =\sqrt{4 x^{2}+4 y^{2}+1}
\end{aligned}
$$

and so the surface area is

$$
\begin{aligned}
\iint_{\Sigma} 1 d S & =\iint_{R} \sqrt{4 x^{2}+4 y^{2}+1} d A \\
& =\int_{0}^{2} \int_{0}^{3} \sqrt{4 x^{2}+4 y^{2}+1} d y d x
\end{aligned}
$$

