1. Parts (a) and (b) are independent.
(a) Let $P=(-1,3), Q=(-2,1)$, and $R=(1,-4)$. Find the projection of $\overrightarrow{P Q}$ onto $\overrightarrow{Q R}$.

Solution:

We have $\overrightarrow{P Q}=-1 \mathbf{i}-2 \mathbf{j}$ and $\overrightarrow{Q R}=3 \mathbf{i}-5 \mathbf{j}$ and so

$$
\operatorname{Proj}_{\overrightarrow{Q R}} \overrightarrow{P Q}=\frac{(-1 \mathbf{i}-2 \mathbf{j}) \cdot(3 \mathbf{i}-5 \mathbf{j})}{(3 \mathbf{i}-5 \mathbf{j}) \cdot(3 \mathbf{i}-5 \mathbf{j})}(3 \mathbf{i}-5 \mathbf{j})=\frac{7}{34}(3 \mathbf{i}-5 \mathbf{j})
$$

(b) Two forces \mathbf{F}_{1} and \mathbf{F}_{2} are applied to an object located at the origin in the $x y$-plane. The force \mathbf{F}_{1} has a magnitude of 60 and makes an angle of $\frac{\pi}{6}$ with the positive x-axis and force \mathbf{F}_{2} has a magnitude of 100 and makes an angle of $\frac{3 \pi}{4}$ with the positive x-axis. Find the magnitude and direction (angle from positive x-axis) of the sum of these forces.

Solution:

The forces are

$$
\mathbf{F}_{1}=60 \cos \frac{\pi}{6} \mathbf{i}+60 \sin \frac{\pi}{6} \mathbf{j}=30 \sqrt{3} \mathbf{i}+30 \mathbf{j}
$$

and

$$
\mathbf{F}_{2}=100 \cos \frac{3 \pi}{4} \mathbf{i}+100 \sin \frac{3 \pi}{4}=-50 \sqrt{2} \mathbf{i}+50 \sqrt{2} \mathbf{j}
$$

and so

$$
\mathbf{F}_{1}+\mathbf{F}_{2}=(30 \sqrt{3}-50 \sqrt{2}) \mathbf{i}+(30+30 \sqrt{2}) \mathbf{j}
$$

The magnitude is then:

$$
\sqrt{(30 \sqrt{3}-50 \sqrt{2})^{2}+(30+30 \sqrt{2})^{2}}
$$

and the angle with the positive x-axis is:

$$
\tan ^{-1}\left(\frac{30+30 \sqrt{2}}{30 \sqrt{3}-50 \sqrt{2}}\right)
$$

2. Parts (a) and (b) are independent.
(a) Find the distance from the point $(1,-3,2)$ to the line containing the points $(1,0,1)$ and $(5,2,0)$.
Solution: The line has $\mathbf{L}=4 \mathbf{i}+2 \mathbf{j}-1 \mathbf{k}$. If $P=(1,0,1)$ is on the line and $Q=(1,-3,2)$ is off the line then the distance is:

$$
\begin{aligned}
\frac{\|\overrightarrow{P Q} \times \mathbf{L}\|}{\|\mathbf{L}\|} & =\frac{\|(0 \mathbf{i}-3 \mathbf{j}+1 \mathbf{k}) \times(4 \mathbf{i}+2 \mathbf{j}-1 \mathbf{k})\|}{\|4 \mathbf{i}+2 \mathbf{j}-1 \mathbf{k}\|} \\
& =\frac{\|1 \mathbf{i}+4 \mathbf{j}+12 \mathbf{k}\|}{\sqrt{16+4+1}} \\
& =\frac{\sqrt{1+16+144}}{\sqrt{16+4+1}}
\end{aligned}
$$

(b) Find an equation of the form $a x+b y+c z=d$ of the plane that contains the point $(1,2,3) \quad[10 \mathrm{pts}]$ and the line

$$
\frac{x}{2}=\frac{y+3}{7}=\frac{z-4}{5}
$$

Solution:

The line has direction vector $\mathbf{L}=2 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k}$ parallel to the plane and the vector $\mathbf{a}=-1 \mathbf{i}-5 \mathbf{j}+1 \mathbf{k}$ joining $(1,2,3)$ to $(0,-3,4)$ is also parallel to the plane. Thus:

$$
\mathbf{N}=(2 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k}) \times(-1 \mathbf{i}-5 \mathbf{j}+1 \mathbf{k})=32 \mathbf{i}-7 \mathbf{j}-3 \mathbf{k}
$$

and so the plane is

$$
\begin{array}{r}
32(x-1)-7(y-2)-3(z-3)=0 \\
32 x-32-7 y+14-3 z+9=0 \\
32 x-7 y-3 z=9
\end{array}
$$

3. Parts (a) and (b) are independent.
(a) Find a parametrization of the quarter circle in the plane $z=1$ with endpoints $(-1,0,1) \quad[8 \mathrm{pts}]$ and $(0,-1,1)$ and center $(0,0,1)$.

Solution:

The most obvious answer might be:

$$
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+1 \mathbf{k} \text { for } \pi \leq t \leq \frac{3 \pi}{2}
$$

(b) Determine if the following pair of lines is parallel, intersecting, or neither. If the lines [12 pts] intersect, find the point at which they intersect.

$$
\begin{gathered}
\mathbf{r}_{1}(t)=(1+6 t) \mathbf{i}+(3-7 t) \mathbf{j}+(2+t) \mathbf{k} \\
\mathbf{r}_{2}(s)=(10+3 s) \mathbf{i}+(6+s) \mathbf{j}+(14+4 s) \mathbf{k}
\end{gathered}
$$

Solution:

In order to meet we would need:

$$
\begin{aligned}
1+6 t & =10+3 s \\
3-7 t & =6+s \\
2+t & =14+4 s
\end{aligned}
$$

The second states that $s=-7 t-3$ so if we plug into the third we get $2+t=14+4(-7 t-3)$ which yields $t=0$ and so $s=-3$. These satisfy the first so they meet.
Since they meet at $t=0$ this is the point $\mathbf{r}_{1}(0)=1 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$ or $(1,3,2)$.
4. Find all critical points of $f(x, y)=x^{3}-6 x^{2}-5 y^{2}$ and classify each as a relative minimum, [20 pts] maximum, or saddle point.

Solution:

The critical points occur when

$$
\begin{aligned}
f_{x}=3 x^{2}-12 x=3 x(x-4) & =0 \\
f_{y}=-10 y & =0
\end{aligned}
$$

Thus $y=0$ and $x=0,4$ yielding $(0,0)$ and $(4,0)$.
We have $D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=(6 x-12)(-10)-(0)^{2}$ and so:
$D(0,0)=+$ and $f_{y y}(0,0)=-$ so relative maximum.
$D(4,0)=-$ so saddle point.
5. Use Lagrange Multipliers to find the maximum and minimum of $f(x, y)=x^{3}-6 x^{2}-5 y^{2}$ subject to the constraint $x^{2}+y^{2}=1$.
Note: Your system will have six solutions.

Solution:

We solve the system:

$$
\begin{aligned}
3 x^{2}-12 x & =\lambda 2 x \\
-10 y & =\lambda 2 y \\
x^{2}+y^{2} & =1
\end{aligned}
$$

The first tells us that $x=0$ or $\lambda=\frac{3 x-12}{2}$. If $x=0$ then the third tells us $y= \pm 1$ so $(0, \pm 1)$.
The second tells us that $y=0$ or $\lambda=-5$. If $y=0$ then the third tells us $x= \pm 1$ so $(\pm 1,0)$.
Otherwise $\frac{3 x-12}{2}=-5$ and so $3 x=2$ so $x=\frac{2}{3}$ so the third tells us that $y= \pm \sqrt{5 / 9}$ so $(2 / 3, \pm \sqrt{5 / 9})$.
Then:

- $f(0,+1)=-5$
- $f(0,-1)=-5$
- $f(+1,0)=-5$
- $f(-1,0)=-7$
- $f(2 / 3,+\sqrt{5 / 9})=\frac{8}{27}-6\left(\frac{4}{9}\right)-5\left(\frac{5}{9}\right)=-\frac{139}{27}$
- $f(2 / 3,-\sqrt{5 / 9})=\frac{8}{27}-6\left(\frac{4}{9}\right)-5\left(\frac{5}{9}\right)=-\frac{139}{27}$

Noting $-5=-\frac{135}{27}$ and $-7=-\frac{189}{27}$ we see that the maximum is -5 and the minimum is -7 .
6. Let R be the region in the first quadrant of the $x y$-plane bounded by the lines $y=x$ and $y=3 x$ and by the hyperbolas $x y=1$ and $x y=5$. Use the change of variables $x=\frac{u}{v}$ and $y=v$ to set
up an iterated double integral in the $u v$-plane representing the area of R.
Do not evaluate this integral.

Solution:

We have the new region S defined by:

$$
\begin{aligned}
y=x \rightarrow v & =u / v \rightarrow v=\sqrt{u} \\
y=3 x \rightarrow v & =3 u / v \rightarrow v=\sqrt{3 u} \\
x y=1 \rightarrow u & =1 \\
x y=5 \rightarrow u & =5
\end{aligned}
$$

We have:

$$
J=\operatorname{det}\left[\begin{array}{cc}
1 / v & -u / v^{2} \\
0 & 1
\end{array}\right]=1 / v
$$

Therefore:

$$
\text { Area }=\iint_{R} 1 d A=\iint_{S}|1 / v| d A=\int_{1}^{5} \int_{\sqrt{u}}^{\sqrt{3 u}} 1 / v d v d u
$$

7. Parts (a) and (b) are independent.
(a) Find the unit vector direction of maximum increase of $f(x, y)=x^{2} y-x y$ at the point [10 pts] $(2,-3)$.

Solution:

The direction of maximum increase is:

$$
\begin{aligned}
\nabla f(x, y) & =(2 x y-y) \mathbf{i}+\left(x^{2}-x\right) \mathbf{j} \\
\nabla f(2,-3) & =(2(2)(-3)-(-3)) \mathbf{i}+\left((2)^{2}-2\right) \mathbf{j} \\
& =-9 \mathbf{i}+2 \mathbf{j}
\end{aligned}
$$

Therefore the corresponding unit vector is:

$$
\frac{-9 \mathbf{i}+2 \mathbf{j}}{\sqrt{(-9)^{2}+4^{2}}}
$$

(b) Use tangent plane approximation to approximate $(16.05)^{1 / 4}(7.95)^{2 / 3}$.

Solution:

We set $f(x, y)=x^{1 / 4} y^{2 / 3}$ and we wish to approximate $f(16.05,7.95)$. We use the anchor point $(16,8)$ and then since:

$$
\begin{aligned}
f(x, y) & \approx f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
f(x, y) & \approx x_{0}^{1 / 4} y_{0}^{2 / 3}+\frac{1}{4} x_{0}^{-3 / 4} y_{0}^{2 / 3}\left(x-x_{0}\right)+\frac{2}{3} x_{0}^{1 / 4} y_{0}^{-1 / 3}\left(y-y_{0}\right) \\
f(16.05,7.95) & \approx 16^{1 / 4} 8^{2 / 3}+\frac{1}{4}(16)^{-3 / 4}(8)^{2 / 3}(16-16.05)+\frac{2}{3}(16)^{1 / 4}(8)^{-1 / 3}(8-7.95)
\end{aligned}
$$

8. Write down the iterated triple integral representing the volume of the solid region D bounded between the spheres (centered at the origin) of radius 1 and 3, and the upper part of the cone $z^{2}=3\left(x^{2}+y^{2}\right)$.
Do not evaluate this integral.

Solution:

We have:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{1}^{3} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

9. Let C be the intersection of the parabolic sheet $y=16-x^{2}$ with the cylinder $x^{2}+z^{2}=4$ with counterclockwise orientation when viewed from the positive y-axis. Use Stokes' Theorem to convert the line integral

$$
\int_{C} x^{2} z d x+x d y+y z d z
$$

to a surface integral. Parametrize the surface to obtain a double iterated integral.
Do not evaluate this integral.
Solution:
By Stokes' Theorem we have:

$$
\int_{C} x^{2} z d x+x d y+y z d z=\iint_{\Sigma}\left(z \mathbf{i}+x^{2} \mathbf{j}+1 \mathbf{k}\right) \cdot \mathbf{n} d S
$$

where Σ is the portion of the parabolic sheet inside the cylinder, oriented in the positive y direction.

We parametrize Σ by

$$
\mathbf{r}(r, \theta)=r \cos \theta \mathbf{i}+\left(16-r^{2} \cos ^{2} \theta\right) \mathbf{j}+r \sin \theta \mathbf{k} \text { for } 0 \leq \theta \leq 2 \pi \text { and } 0 \leq r \leq 2
$$

Then

$$
\begin{aligned}
\mathbf{r}_{r} & =\cos \theta \mathbf{i}-2 r \cos ^{2} \theta \mathbf{j}+\sin \theta \mathbf{k} \\
\mathbf{r}_{\theta} & =-r \sin \theta \mathbf{i}+2 r^{2} \sin \theta \cos \theta \mathbf{j}+r \cos \theta \mathbf{k} \\
\mathbf{r}_{r} \times \mathbf{r}_{\theta} & =-2 r^{2} \cos \theta \mathbf{i}-r \mathbf{j}+0 \mathbf{k}
\end{aligned}
$$

This is opposite Σ 's and so:

$$
\begin{aligned}
\iint_{\Sigma}\left(z \mathbf{i}+x^{2} \mathbf{j}+1 \mathbf{k}\right) \cdot \mathbf{n} d S & =-\iint_{R}\left(r \sin \theta \mathbf{i}+(r \cos \theta)^{2} \mathbf{j}+1 \mathbf{k}\right) \cdot\left(-2 r^{2} \cos \theta \mathbf{i}-r \mathbf{j}+0 \mathbf{k}\right) d A \\
& =-\int_{0}^{2 \pi} \int_{0}^{2}-2 r^{3} \sin \theta \cos \theta-r^{3} \cos ^{2} \theta d r d \theta
\end{aligned}
$$

10. Parts (a) and (b) are independent.
(a) Evaluate $\int_{C}(2 x+y) d x+x d y$ where C is the line segment joining $(1,4)$ to $(5,-1)$.

Solution:
The vector field is conservative with $f(x, y)=x^{2}+x y$ and so

$$
\int_{C}(2 x+y) d x+x d y=f(5,-1)-f(1,4)=\left[(5)^{2}+(5)(-1)\right]-\left[(1)^{2}+(1)(4)\right]
$$

(b) Evaluate $\iint_{\Sigma}(2 x \mathbf{i}+5 z \mathbf{j}-7 y \mathbf{k}) \cdot \mathbf{n} d S$ where Σ is the sphere $x^{2}+y^{2}+z^{2}=9$ with inwards $\quad[10 \mathrm{pts}]$ orientation.

Solution:

The surface Σ is the boundary of D where D is the solid ball $x^{2}+y^{2}+z^{2} \leq 9$. By the Divergence Theorem with a negative due to orientation we have:

$$
\begin{aligned}
\iint_{\Sigma}(2 x \mathbf{i}+5 z \mathbf{j}-7 y \mathbf{k}) \cdot \mathbf{n} d S & =-\iiint_{D} 2+0-7 d V \\
& =5(\text { Volume of } D) \\
& =5\left(\frac{4}{3} \pi(3)^{3}\right)
\end{aligned}
$$

