1. Parts (a) and (b) are independent.
(a) Find parametric equations for the line L containing the points $(-2,0,1)$ and $(4,-2,-3)$. [10 pts]

Solution:

Since:

$$
\mathbf{L}=6 \mathbf{i}-2 \mathbf{j}-4 \mathbf{k}
$$

we have

$$
\begin{aligned}
& x=-2+6 t \\
& y=0-2 t \\
& z=1-4 t
\end{aligned}
$$

(b) Do the planes $\mathcal{P}_{0}: 2 x-y+3 z=-2$, and $\mathcal{P}_{1}:-2 x-3 y+z=6$ intersect? If so, find \quad [10 pts] symmetric equations for the line of intersection. If not, explain why not.

Solution:

Yes since the normal vectors $\mathbf{n}_{1}=2 \mathbf{i}-1 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{n}_{2}=-2 \mathbf{i}-3 \mathbf{j}+1 \mathbf{k}$ are not parallel.
For the line between them we have:

$$
\mathbf{L}=\mathbf{n}_{1} \times \mathbf{n}_{2}=8 \mathbf{i}-8 \mathbf{j}-8 \mathbf{k}
$$

If we add the equations we get $-4 y+4 z=4$ so we may use $z=1$ and $y=0$ and then $x=-\frac{5}{2}$.
The solution is therefore:

$$
\frac{x-\left(-\frac{5}{2}\right)}{8}=\frac{y-0}{-8}=\frac{z-1}{-8}
$$

2. (a) Find an equation for the plane containing the points $P=(1,-3,1), Q=(2,2,0)$, and [10 pts] $R=(-4,-1,1)$.

Solution:

We have:

$$
\begin{aligned}
\overrightarrow{P Q} & =1 \mathbf{i}+5 \mathbf{j}-1 \mathbf{k} \\
\overrightarrow{P R} & =-5 \mathbf{i}+2 \mathbf{j}+0 \mathbf{k} \\
\overrightarrow{P Q} \times \overrightarrow{P R} & =2 \mathbf{i}+5 \mathbf{j}+27 \mathbf{k}
\end{aligned}
$$

So the plane is:

$$
2(x-1)+5(y+3)+27(z-1)=0
$$

Note: They don't need to simplify but for comparison this simplifies to:

$$
2 x+5 y+27 z=14
$$

(b) Find the distance between the point $S=(-2,3,1)$ and the plane $-4 x+y-2 z=0$.

Solution:

The normal vector for the plane is $\mathbf{n}=-4 \mathbf{i}+1 \mathbf{j}-2 \mathbf{k}$ and a point on the plane is $P=(0,0,0)$ so then we have $\overrightarrow{P S}=-2 \mathbf{i}+3 \mathbf{j}+1 \mathbf{k}$ and so:

$$
\operatorname{dist}=\frac{|\overrightarrow{P S} \cdot \mathbf{n}|}{\|\mathbf{n}\|}=\frac{|(-2 \mathbf{i}+3 \mathbf{j}+1 \mathbf{k}) \cdot(-4 \mathbf{i}+1 \mathbf{j}-2 \mathbf{k})|}{\|-4 \mathbf{i}+1 \mathbf{j}-2 \mathbf{k}\|}=\frac{9}{\sqrt{21}}
$$

3. Parts (a) and (b) are independent.
(a) Compute the length of the curve C_{1} with parametrization

$$
\mathbf{r}(t)=\frac{1}{3}(1+t)^{\frac{3}{2}} \mathbf{i}+\frac{1}{3}(1-t)^{\frac{3}{2}} \mathbf{j}+t \sqrt{3} \mathbf{k} \text { for }-\frac{1}{4} \leq t \leq \frac{1}{2}
$$

Solution:

We have:

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\frac{1}{2}(1+t)^{\frac{1}{2}} \mathbf{i}-\frac{1}{2}(1-t)^{\frac{1}{2}} \mathbf{j}+\sqrt{3} \mathbf{k} \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{\frac{1}{4}(1+t)+\frac{1}{4}(1-t)+3} \\
& =\sqrt{\frac{7}{2}}
\end{aligned}
$$

and so:

$$
\text { Length }=\int_{-\frac{1}{4}}^{\frac{1}{2}} \sqrt{\frac{7}{2}} d t=\sqrt{\frac{7}{2}}\left(\frac{1}{2}\right)-\sqrt{\frac{7}{2}}\left(-\frac{1}{4}\right)
$$

(b) Find all points (if any) where the curve C_{2} with the following parametrization meets the sphere of radius 3 centered at the origin.

$$
\mathbf{r}(t)=\sqrt{t} \mathbf{i}+\sqrt{t+1} \mathbf{j}+t \mathbf{k} \text { for } t \geq 0
$$

Solution:

The sphere has equation $x^{2}+y^{2}+z^{2}=9$ and so we must have:

$$
\begin{aligned}
(\sqrt{t})^{2}+(\sqrt{t+1})^{2}+t^{2} & =9 \\
t+t+1+t^{2} & =9 \\
t^{2}+2 t-8 & =0 \\
(t+4)(t-2) & =0
\end{aligned}
$$

Since $t \geq 0$ we have $t=2$ and the point is:

$$
\mathbf{r}(4)=\sqrt{2} \mathbf{i}+\sqrt{3} \mathbf{j}+2 \mathbf{k}
$$

which is the point:

$$
(\sqrt{2}, \sqrt{3}, 2)
$$

4. Consider the curve parameterized by $\mathbf{r}(t)=\cos ^{3} t \mathbf{i}+\sin ^{3} t \mathbf{j}$.
(a) Find the tangent vector $\mathbf{T}(t)$.

Solution:

We have:

$$
\mathbf{r}^{\prime}(t)=-3 \sin t \cos ^{2} t \mathbf{i}+3 \sin ^{2} t \cos t \mathbf{j}
$$

Noting that:

$$
\begin{aligned}
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{9 \sin ^{2} \cos ^{4} t+9 \sin ^{4} \cos ^{2} t} \\
& =3 \sin t \cos t \sqrt{\cos ^{2} t+\sin ^{2} t} \\
& =3 \sin t \cos t
\end{aligned}
$$

We then have:

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=-\cos t \mathbf{i}+\sin t \mathbf{j}
$$

(b) Find the normal vector $\mathbf{N}(t)$.

Solution:

We have:

$$
\mathbf{T}^{\prime}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}
$$

noting that:

$$
\left\|\mathbf{T}^{\prime}(t)\right\|=1
$$

we then have:

$$
\mathbf{N}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}
$$

5. Let $f(x, y, z)=z^{2}-8 \sqrt{x^{2}-3 y}$. Consider the S surface with equation $f(x, y, z)=0$.
(a) Find $\operatorname{grad} f$.

Solution:

We have:

$$
\nabla f=-4\left(x^{2}-3 y\right)^{-\frac{1}{2}}(2 x) \mathbf{i}-4\left(x^{2}-3 y\right)^{-\frac{1}{2}}(-3) \mathbf{j}+2 z \mathbf{k}
$$

(b) Find an equation of the plane tangent to the level surface for f at $(5,3,2)$.

Solution:

Since:

$$
\begin{aligned}
\nabla f(5,3,2) & =-4(25-9)^{-\frac{1}{2}}(10) \mathbf{i}-4(25-9)^{-\frac{1}{2}}(-3) \mathbf{j}+4 \mathbf{k} \\
& =-10 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}
\end{aligned}
$$

So the plane has equation:

$$
-10(x-5)+3(y-3)+4(z-2)=0
$$

(c) Find $D_{\mathbf{u}} f$ at $(5,3,2)$ where \mathbf{u} is pointing in the direction $1 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$.

Solution:

We have:

$$
\mathbf{u}=\frac{1}{\sqrt{14}}(1 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k})
$$

and so:

$$
\begin{aligned}
D_{\mathbf{u}} f(5,3,2) & =\frac{1}{\sqrt{14}}(1 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}) \cdot(-10 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}) \\
& =\frac{1}{\sqrt{14}}(-10+6-12)
\end{aligned}
$$

(d) Find the smallest value of $D_{\mathbf{u}} f$ at $(5,3,2)$.

Solution:

This would be:

$$
-\|\nabla f(5,3,2)\|=-\sqrt{100+9+16}
$$

6. Let $f(x, y)=x^{4}+y^{2}$.
(a) Use Lagrange Multipliers to find the maximum and minimum of $f(x, y)$ subject to the $[15 \mathrm{pts}]$ constraint $x^{2}+y^{2}=1$.

Solution:

We set $g(x, y)=x^{2}+y^{2}$ and solve the system:

$$
\begin{aligned}
4 x^{3} & =\lambda 2 x \\
2 y & =\lambda 2 y \\
x^{2}+y^{2} & =1
\end{aligned}
$$

Note that $x=0$ satisfies the first and yields $y= \pm 1$ in the third, and this also satisfies the second. Thus we have $(0, \pm 1)$.
Note that $y=0$ satisfies the second and yields $x= \pm 1$ in the third, and this also satisfies the first. Thus we have $(\pm 1,0)$.
If neither is 0 then solving the first and second for λ and equating yields $2 x^{2}=1$ or $x= \pm \frac{\sqrt{2}}{2}$ which in the third yields $\pm \frac{\sqrt{2}}{2}$.
Thus we have eight points which we check: Checking:

$$
f(1,0)=f(-1,0)=f(0,1)=f(0,-1)=1
$$

and:

$$
f\left(\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2}\right)=\frac{3}{4}
$$

So the maximum is 1 and the minimum is $\frac{3}{4}$.
(b) Find the maximum and minimum of $f(x, y)$ subject to the constraint $x^{2}+y^{2} \leq 1$.

Solution: We have $f_{x}=2 x$ and $f_{y}=2 y$ which yields critical point $(0,0)$. Noting that $f(0,0)=0$ and that the maximum and minimum on the boundary were determined we still have a maximum of 1 and now a minimum of 0 .
7. Use the change of variables $u=y-x$ and $v=y+x$ to evaluate the double integral

$$
\iint_{R}(y-x) \sin \left((y+x)^{3}\right) d A
$$

where R is the triangle with vertices $(0,0),(2,2)$ and $(0,4)$.
Solution: The region looks like:

The sides of the triangle are $y=x, y=4-x$ and $x=0$.

- Rewriting the first two as $y-x=0, y+x=4$ yields $u=0$ and $v=4$.
- The COV yields $x=\frac{1}{2}(v-u)$ and $y=\frac{1}{2}(u+v)$ so $x=0$ yields $\frac{1}{2}(v-u)=0$ or $v=u$.

Thus the new region S is:

The Jacobian of the change of variables is:

$$
J(x, y)=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{rr}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right|=-\frac{1}{2}
$$

Thus we have:

$$
\begin{aligned}
\iint_{R}(y-x) \sin \left((y+x)^{3}\right) d A & =\iint_{S} u \sin \left(v^{3}\right)\left|-\frac{1}{2}\right| d A \\
& =\frac{1}{2} \int_{0}^{4} \int_{0}^{v} u \sin \left(v^{3}\right) d u d v \\
& =\left.\frac{1}{4} \int_{0}^{4} u^{2} \sin \left(v^{3}\right)\right|_{0} ^{v} d v \\
& =\frac{1}{4} \int_{0}^{4} v^{2} \sin \left(v^{3}\right) d v \\
& =-\left.\frac{1}{12} \cos \left(v^{3}\right)\right|_{0} ^{4} \\
& =-\frac{1}{12}(\cos (64)-\cos (0))
\end{aligned}
$$

8. Find the volume of the solid region bounded above by the sphere $x^{2}+y^{2}+z^{2}=8$ and below [20 pts] by the paraboloid $2 z=x^{2}+y^{2}$.

Solution:

The solid is the region above the paraboloid and below the sphere. In cylindrical the sphere is $r^{2}+z^{2}=8$ or (the top half is) $z=\sqrt{8-r^{2}}$ and the paraboloid is $2 z=r^{2}$ or $z=\frac{1}{2} r^{2}$.
The two meet when:

$$
\begin{aligned}
r^{2}+z^{2} & =8 \\
2 z+z^{2} & =8 \\
z^{2}+2 z-8 & =0 \\
(z-2)(z+4) & =0
\end{aligned}
$$

Since $z \geq 0$ we have $z=2$ and so $r^{2}=4$ so $r=2$.
The volume therefore is:

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2 \pi} \int_{0}^{2}\left[\sqrt{8-r^{2}}-\frac{1}{2} r^{2}\right] r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r \sqrt{8-r^{2}}-\frac{1}{2} r^{3} d r d \theta \\
& =\int_{0}^{2 \pi}-\frac{1}{3}\left(8-r^{2}\right)^{\frac{3}{2}}-\left.\frac{1}{8} r^{4}\right|_{0} ^{2} d \theta \\
& =\int_{0}^{2 \pi}\left[-\frac{1}{3}(4)^{\frac{3}{2}}-\frac{1}{8}(16)\right]-\left[-\frac{1}{3}(8)^{\frac{3}{2}}-\frac{1}{8}(0)\right] d \theta \\
& =2 \pi\left[\left[-\frac{1}{3}(4)^{\frac{3}{2}}-\frac{1}{8}(16)\right]-\left[-\frac{1}{3}(8)^{\frac{3}{2}}-\frac{1}{8}(0)\right]\right]
\end{aligned}
$$

9. Parts (a) and (b) are independent.
(a) Let Σ be the portion of the cylinder $x^{2}+y^{2}=9$ between $z=1$ and $z=8$. If the mass density at (x, y, z) is given by $f(x, y, z)=x^{2} z$ write down an iterated double integral for the mass of Σ.

Do not evaluate the integral!

Solution:
We parametrize the cylinder by:

$$
\mathbf{r}(\theta, z)=3 \cos \theta \mathbf{i}+3 \sin \theta \mathbf{j}+z \mathbf{k} \text { with } 0 \leq \theta \leq 2 \pi \text { and } 1 \leq z \leq 8(\text { this is } R)
$$

Therefore we have

$$
\begin{aligned}
\mathbf{r}_{\theta} & =-3 \sin \theta \mathbf{i}+3 \cos \theta \mathbf{j}+0 \mathbf{k} \\
\mathbf{r}_{z} & =0 \mathbf{i}+0 \mathbf{j}+1 \mathbf{k} \\
\mathbf{r}_{\theta} \times \mathbf{r}_{z} & =3 \cos \theta \mathbf{i}+3 \sin \theta \mathbf{j}+0 \mathbf{k} \\
\left\|\mathbf{r}_{\theta} \times \mathbf{r}_{z}\right\| & =3
\end{aligned}
$$

And so:

$$
\begin{aligned}
\text { Mass } & =\iint_{\Sigma} x^{2} z d S \\
& =\iint_{R}(3 \cos \theta)^{2}(z)(3) d A \\
& =\int_{0}^{2 \pi} \int_{1}^{8} 27 z \cos ^{2} \theta d z d \theta
\end{aligned}
$$

(b) Let C be the triangle with vertices $(0,4),(2,0)$ and $(2,4)$ with clockwise orientation. Use [8 pts] Green's Theorem to evaluate

$$
\int_{C} 4 y d x+9 x d y
$$

Solution:

We have:

$$
\int_{C} 4 y d x+9 x d y=\iint_{R} 9-4 d A=5 \iint_{R} 1 d A=5(\text { Area of } R)=5\left(\frac{1}{2}(2)(4)\right)
$$

10. Let Σ be the portion of the plane $x+2 y+z=10$ in the first octant. Let C be the boundary of Σ with counterclockwise orientation when viewed from above. Use Stokes' Theorem to rewrite the integral $\int_{C} 3 x y d x+z^{2} d y+x y d z$ as a surface integral and then proceed until you have an iterated double integral. Do not evaluate the integral!

Solution:

Stokes' Theorem tells us that

$$
\int_{C} 3 x y d x+z^{2} d y+x y d z=\iint_{\Sigma}[(x-2 z) \mathbf{i}-(y-0) \mathbf{j}+(0-3 x) \mathbf{k}] \cdot \mathbf{n} d S
$$

where Σ is the part of the plane in the first octant oriented upwards. We parametrize Σ as:

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+(10-x-2 y) \mathbf{k} \text { with } 0 \leq x \leq 10 \text { and } 0 \leq y \leq 5-\frac{1}{2} x(\text { this is } R)
$$

Then

$$
\begin{aligned}
\mathbf{r}_{x} & =1 \mathbf{i}+0 \mathbf{j}-1 \mathbf{k} \\
\mathbf{r}_{y} & =0 \mathbf{i}+1 \mathbf{j}-2 \mathbf{k} \\
\mathbf{r}_{x} \times \mathbf{r}_{y} & =1 \mathbf{i}+2 \mathbf{j}+1 \mathbf{k}
\end{aligned}
$$

Since this matches Σ 's orientation the integral becomes

$$
\begin{aligned}
& \iint_{\Sigma}[(x-2 z) \mathbf{i}-(y-0) \mathbf{j}+(0-3 x) \mathbf{k}] \cdot \mathbf{n} d S \\
& =+\iint_{R}[(x-2(10-x-2 y)) \mathbf{i}-y \mathbf{j}-3 x \mathbf{k}] \cdot[1 \mathbf{i}+2 \mathbf{j}+1 \mathbf{k}] d A \\
& =\int_{0}^{10} \int_{0}^{5-\frac{1}{2} x} x-2(10-x-2 y)-2 y-3 x d y d x
\end{aligned}
$$

