1. Let \mathcal{L} be the line with symmetric equation:

$$
\frac{x-1}{2}=\frac{z}{3}, y=2
$$

Let \mathcal{P} be the plane with equation:

$$
2 x+y-3 z=1
$$

(a) Find the point at which \mathcal{L} meets \mathcal{P}.

Solution: The line has $z=\frac{3 x-3}{2}$ and $y=2$ so we can rewrite the plane:

$$
\begin{aligned}
2 x+2-3\left(\frac{3 x-3}{2}\right) & =1 \\
2 x+2-\frac{9 x-9}{2} & =1 \\
4 x+4-9 x+9 & =2 \\
-5 x & =-11 \\
x & =\frac{11}{5}
\end{aligned}
$$

Then:

$$
z=\frac{3 x-3}{2}=\frac{3(11 / 5)-3}{2}=\frac{33 / 5-3}{2}=\frac{9}{5}
$$

Thus the point is:

$$
\left(\frac{11}{5}, 2, \frac{9}{5}\right)
$$

(b) At this point, what is the cosine of the angle between \mathcal{L} and the normal vector for \mathcal{P} ?

Solution: We know that the vector for \mathcal{L} is $\mathbf{L}=2 \mathbf{i}+0 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{N}=2 \mathbf{i}+1 \mathbf{j}-3 \mathbf{k}$. Then:

$$
\cos \theta=\frac{\mathbf{L} \cdot \mathbf{N}}{\|\mathbf{L}\|\|\mathbf{N}\|}=\frac{-5}{\sqrt{13} \sqrt{14}}
$$

(c) If you went to the point on the line where $x=7$ and drew a sphere centered at that point, how [15 pts] large could the radius be before the sphere hit the plane?
Solution: The point with $x=7$ has:

$$
\frac{7-1}{2}=\frac{z}{3}, y=2
$$

Hence is $(7,2,9)$. We then find the distance from $Q=(7,2,9)$ to the plane. The plane has $P=(0,1,0)$ and so the distance is:

$$
\frac{|\overrightarrow{P Q} \cdot \mathbf{N}|}{\|\mathbf{N}\|}=\frac{|(7 \mathbf{i}+1 \mathbf{j}+9 \mathbf{k}) \cdot(2 \mathbf{i}+1 \mathbf{j}-3 \mathbf{k})|}{\|2 \mathbf{i}+1 \mathbf{j}-3 \mathbf{k}\|}=\frac{|-12|}{\sqrt{14}}
$$

So the radius must be smaller than this.
2. Define the function:

$$
f(x, y)=x y^{2}+2 x y-y
$$

(a) Find the equation of the plane tangent to the graph of $f(x, y)$ at $(1,2)$. Write this in the form [25 pts] $a x+b y+c z=d$.
Solution: The graph is $z=x y^{2}+2 x y-y$. At $(x, y)=(1,2)$ we have $z=6$. Then if we introduce a new $g(x, y, z)$ as follows:

$$
\begin{aligned}
g(x, y, z) & =x y^{2}+2 x y-y-z \\
\nabla g(x, y, z) & =\left(y^{2}+2 y\right) \mathbf{i}+(2 x y+2 x-1) \mathbf{j}-1 \mathbf{k} \\
\nabla g(1,2,6) & =8 \mathbf{i}+5 \mathbf{j}-1 \mathbf{k}
\end{aligned}
$$

So the plane is:

$$
\begin{aligned}
8(x-1)+5(y-2)-1(z-6) & =0 \\
8 x+5 y-z & =12
\end{aligned}
$$

(b) Calculate $\int_{C} \nabla f(x, y) \cdot d \mathbf{r}$ where C is the curve parametrized by $\mathbf{r}(t)=\left(t^{2}+t\right) \mathbf{i}+(5 t+2) \mathbf{j}$ for $\quad[15 \mathrm{pts}]$ $1 \leq t \leq 2$.
Solution: Since $\nabla f(x, y)$ is conservative with potential function $f(x, y)$ we can use the Fundamental Theorem of Line Integrals. The curve has:

$$
\begin{aligned}
\text { Start } & \mathbf{r}(1)=2 \mathbf{i}+7 \mathbf{j} \Longrightarrow(2,7) \\
\text { End } & \mathbf{r}(2)=6 \mathbf{i}+12 \mathbf{j} \Longrightarrow(6,12)
\end{aligned}
$$

Then:

$$
\int_{C} \nabla f(x, y) \cdot d \mathbf{r}=f(6,12)-f(2,7)=\left((6)(12)^{2}+2(6)(12)-12\right)-\left((2)(7)^{2}+2(2)(7)-7\right)
$$

3. Let C be the counterclockwise curve consisting of the semicircle $x^{2}+y^{2}=9$ with $x \geq 0$ along with the line segment joining the endpoints of that semicircle. Consider the integral:

$$
\int_{C} 6 y d x+15 x d y
$$

(a) Parametrize C (you'll need two parametrizations) and use them to evaluate the integral.

Solution: For the curved part of C we have $\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}$ for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$ and so $\mathbf{r}^{\prime}(t)=-3 \sin t \mathbf{i}+3 \cos t \mathbf{j}$ and then:

$$
\begin{aligned}
\int_{C} 6 y d x+15 x d y & =\int_{-\pi / 2}^{\pi / 2} 6(3 \sin t)(-3 \sin t)+15(3 \cos t)(3 \cos t) d t \\
& =\int_{-\pi / 2}^{\pi / 2} 6(3 \sin t)(-3 \sin t)+15(3 \cos t)(3 \cos t) d t \\
& =\int_{-\pi / 2}^{\pi / 2}-54+189 \cos ^{2} t d t \\
& =\int_{-\pi / 2}^{\pi / 2}-54+\frac{189}{2}(1+\cos (2 t)) d t \\
& =-54 t+\left.\frac{189}{2}\left(t+\frac{1}{2} \sin (2 t)\right)\right|_{-\pi / 2} ^{\pi / 2} \\
& =\frac{81 \pi}{2}
\end{aligned}
$$

For the straight part of C we have $\mathbf{r}(t)=0 \mathbf{i}+(3-t) \mathbf{j}$ for $0 \leq t \leq 6$. and so $\mathbf{r}^{\prime}(t)=0 \mathbf{i}-1 \mathbf{j}$ and then:

$$
\int_{C} 6 y d x+15 x d y=\int_{0}^{6} 6(3-t)(0)+15(0)(-1) d t=0
$$

Thus the total is $\frac{81 \pi}{2}$.
(b) Use Green's Theorem to rewrite the line integral as an integral over a region R. Evaluate this integral.
Solution: Using Green's Theorem we have:

$$
\begin{aligned}
\int_{C} 6 y d x+15 x d y & =\iint_{R} 15-6 d A \\
& =9 \iint_{R} 1 d A \\
& =9\left(\frac{\pi(3)^{2}}{2}\right) \\
& =\frac{81 \pi}{2}
\end{aligned}
$$

(c) Your answers to (a) and (b) should be equal. Are they? Yes or no is enough.

Solution: Yes.
4. Let C be the intersection of the plane $z=9-y$ with the cylinder $x^{2}+y^{2}=4$ with counterclockwise orientation when viewed from above. Consider the integral:

$$
\int_{C} x d x+x d y+z d z
$$

(a) Parametrize C and use this parametrization to evaluate the integral.

Solution: We parametrize C using:

$$
\mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j}+(9-2 \sin t) \mathbf{k} \text { with } 0 \leq t \leq 2 \pi
$$

Then we have:

$$
\mathbf{r}^{\prime}(t)=-2 \sin t \mathbf{i}+2 \cos t \mathbf{j}-2 \cos t \mathbf{k}
$$

and then:

$$
\begin{aligned}
\int_{C} x d x+x d y+z d z & =\int_{0}^{2 \pi}(2 \cos t)(-2 \sin t)+(2 \cos t)(2 \cos t)+(9-2 \sin t)(-2 \cos t) d t \\
& =\int_{0}^{2 \pi}-18 \cos t+4 \cos ^{2} t d t \\
& =\int_{0}^{2 \pi}-18 \cos t+2(1+\cos (2 t)) d t \\
& =\int_{0}^{2 \pi}-18 \cos t+2+2 \cos (2 t) d t \\
& =18 \sin t+2 t+\left.\sin (2 t)\right|_{0} ^{2 \pi} \\
& =4 \pi
\end{aligned}
$$

(b) Use Stokes' Theorem to rewrite the line integral as a surface integral over an appropriate surface. Evaluate this surface integral.
Solution: Stokes' Theorem states that:

$$
\int_{C} x d x+x d y+z d z=\iint_{\Sigma}(0 \mathbf{i}+0 \mathbf{j}+1 \mathbf{k}) \cdot \mathbf{n} d S
$$

where Σ is the part of the plane inside the cylinder with induced upwards orientation. We then parametrize Σ and continue:

$$
\begin{aligned}
\mathbf{r}(r, \theta) & =r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}+(9-r \sin \theta) \mathbf{k} \quad \text { with } 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi \\
\mathbf{r}_{r} & =\cos \theta \mathbf{i}+\sin \theta \mathbf{j}-\sin \theta \mathbf{k} \\
\mathbf{r}_{\theta} & =-r \sin \theta \mathbf{i}+r \cos \theta \mathbf{j}-r \cos \theta \mathbf{k} \\
\mathbf{r}_{r} \times \mathbf{r}_{\theta} & =0 \mathbf{i}+r \mathbf{j}+r \mathbf{k}
\end{aligned}
$$

This matches Σ 's orientation and so we get:

$$
\begin{aligned}
\iint_{\Sigma}(0 \mathbf{i}+0 \mathbf{j}+1 \mathbf{k}) \cdot \mathbf{n} d S & =+\iint_{R}(0 \mathbf{i}+0 \mathbf{j}+1 \mathbf{k}) \cdot(0 \mathbf{i}+r \mathbf{j}+r \mathbf{k}) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r d r d \theta \\
& =\int_{0}^{2 \pi} 2 d \theta \\
& =4 \pi
\end{aligned}
$$

(c) Write down the Matlab command you would use to evaluate the final iterated integral in (b).

Solution: int (int ($\mathrm{r}, 0,2$) , $0,2 * \mathrm{pi}$)
(d) Your answers to (a) and (b) should be equal. Are they? Yes or no is enough.

Solution: Yes.
5. Define the function:

$$
f(x, y)=x^{3}+y^{3}+3 x y
$$

(a) Find and categorize all critical points of $f(x, y)$.

Solution: We have:

$$
\begin{aligned}
& f_{x}(x, y)=3 x^{2}+3 y=0 \\
& f_{y}(x, y)=3 y^{2}+3 x=0
\end{aligned}
$$

The first gives us $y=-x^{2}$ and if we plug this into the second we get:

$$
\begin{array}{r}
3\left(-x^{2}\right)^{2}+3 x=0 \\
x^{4}+x=0 \\
x\left(x^{3}+1\right)=0
\end{array}
$$

So we get $x=0$ and $x=-1$.
If $x=0$ then $y=0$ and we have $(0,0)$ and if $x=-1$ then $y=-1$ and we have $(-1,-1)$ We then find $D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=(6 x)(6 y)-(3)^{2}$ and we check the points:
$D(0,0)<0$ so $(0,0)$ is a saddle point.
$D(-1,-1)>0$ and $f_{x x}(-1,-1)<0$ so $(-1,-1)$ is a relative maximum.
(b) Without doing any integration explain how you know that $\int_{C} f(x, y) d s>25$ where C is the part [20 pts] of the semicircle $x^{2}+y^{2}=4$ in the first quadrant.
Hint: This is tricky. The integral measures mass. Can you find a constant A such that $f(x, y) \geq A$ on C ?
Solution: If we set $g(x, y)=x^{2}+y^{2}$ and use Lagrange multipliers to minimize f with $g(x, y)=4$ we have the system:

$$
\begin{aligned}
3 x^{2}+3 y & =\lambda(2 x) \\
3 y^{2}+3 x & =\lambda(2 y) \\
x^{2}+y^{2} & =4
\end{aligned}
$$

The first two can be rewritten:

$$
\begin{aligned}
& 3 x^{2} y+3 y^{2}=\lambda(2 x y) \\
& 3 x y^{2}+3 x^{2}=\lambda(2 x y)
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
3 x^{2} y+3 y^{2} & =3 x y^{2}+3 x^{2} \\
x^{2} y-x y^{2} & =x^{2}-y^{2} \\
x y(x-y) & =(x-y)(x+y)
\end{aligned}
$$

We then have either $x-y=0$ or $x y=x+y$. The latter is a hyperbola which does not intersect $x^{2}+y^{2}=4$ so this yields no solutions. The former then gives us $x=y$ and this intersects $x^{2}+y^{2}=4$ at $(\sqrt{2}, \sqrt{2})$. Note that $f(\sqrt{2}, \sqrt{2})=4 \sqrt{2}+6$. This is a maximum because $f(2,0)=f(0,2)=8$ which is smaller.
Thus the minimum is $A=8$ and so:

$$
\int_{C} f(x, y) d s \geq \int_{c} 8 d s=8 \int_{c} 1 d s=8(\text { Length })=8 \pi \approx 25.1327>25
$$

