Please put problem 1 on answer sheet 1

1. Given the following data:
 \[\vec{a} = 3 \hat{i} - 2 \hat{j} + 1 \hat{k} \]
 \[\vec{b} = 1 \hat{i} + 2 \hat{j} + 3 \hat{k} \]
 (a) Show that \(\vec{a} \) and \(\vec{b} \) are not perpendicular. [3 pts]
 (b) Find a vector of length 1 perpendicular to both \(\vec{a} \) and \(\vec{b} \). [10 pts]
 (c) Find \(\text{Pr}_\vec{b} \vec{a} \). [7 pts]

Please put problem 2 on answer sheet 2

2. (a) Find the simplified equation of the plane containing \((1, 2, 3)\) and perpendicular to the line
 \[\frac{x - 2}{3} = \frac{5 - y}{2}, \quad z = 3 \] [8 pts]
 (b) Find the tangential component of acceleration \(a_T \) at \(t = 2 \) for the curve parametrized by
 \[\vec{r}(t) = t \hat{i} - t^2 \hat{j} + t^2 \hat{k} \]. [12 pts]

Please put problem 3 on answer sheet 3

3. (a) Sketch the VVF \(\vec{r}(t) = 3 \cos t \hat{i} + 2 \hat{j} + 2 \sin t \hat{k} \) for \(0 \leq t \leq \pi \). Label three points with their coordinates. [10 pts]
 (b) Write down a parametrization of the semicircle \(x^2 + y^2 = 9 \) with \(x \geq 0 \) along with the line segment joining the endpoints, in a counterclockwise direction. [10 pts]

Please put problem 4 on answer sheet 4

4. (a) Sketch the plane \(2x + 12y + 3z = 24 \) and label three points with their coordinates. [5 pts]
 (b) Sketch the plane \(2x + 3y = 12 \) and label two points with their coordinates. [5 pts]
 (c) Find the length of the curve parametrized by \(\vec{r}(t) = \cos t \hat{i} + \sin t \hat{j} + 2 t^{3/2} \hat{k} \) with \(0 \leq t \leq 2 \). If you’re careful the integral should be easy. [10 pts]

Please put problem 5 on answer sheet 5

5. (a) Find the two points where the curve \(\vec{r}(t) = t \hat{i} + t^2 \hat{j} - 3 \hat{k} \) meets the plane \(-2x + y + z = 0\). [10 pts]
 (b) Suppose \(\vec{a}(t) = 1 \hat{i} + 0 \hat{j} + 0 \hat{k}, \quad \vec{v}(0) = 0 \hat{i} + 0 \hat{j} + 1 \hat{k} \) and \(\vec{r}(1) = \vec{0} \). Find \(\vec{r}(t) \). [10 pts]

The End