Math 241 Exam 1 Fall 2018 Solutions

1. (a) Find the center and radius of the sphere with equation $x^{2}+4 x+y^{2}+z^{2}-6 x=0$.

Solution: We complete the square:

$$
\begin{array}{r}
x^{2}+4 x+4+y^{2}+z^{2}-6 x+9=13 \\
(x+2)^{2}+y^{2}+(z-3)^{2}=13
\end{array}
$$

The center is $(-2,0,3)$ and the radius is $\sqrt{13}$.
(b) Show that the points $(1,2),(2,5)$ and $(-5,4)$ form a right triangle.

Solution: The vector joining the first and second points is $2 \mathbf{i}+3 \mathbf{j}$.
The vector joining the first and third points is $-6 \mathbf{i}+2 \mathbf{j}$.
Since the $(2 \mathbf{i}+3 \mathbf{j}) \cdot(-6 \mathbf{i}+2 \mathbf{j})=0$, they form a right angle.
Note: This can also be done by finding the lengths of the sides and showing that the Pythagorean Theorem holds.
2. Find the point at which the line with symmetric equation

$$
\frac{2-x}{3}=\frac{y}{4}, z=5
$$

meets the plane $x+5 y-2 z=9$.
Solution: The line has $x=2-3 t, y=4 t$ and $z=5$. If we plug these into the plane we see

$$
\begin{aligned}
(2-3 t)+5(4 t)-2(5) & =9 \\
17 t & =17 \\
t & =1
\end{aligned}
$$

Thus they meet at $x=2-3(1)=-1, y=4(1)=4$ and $z=5$.
Alternate Solution: We know $y=4\left(\frac{2-x}{3}\right)$ so if we substitute into the plane equation:

$$
\begin{aligned}
x+5\left[4\left(\frac{2-x}{3}\right)\right]-2(5) & =9 \\
3 x+40-20 x-30 & =27 \\
-17 x & =17 \\
x & =-1
\end{aligned}
$$

Then we have $y=4\left(\frac{2-(-1)}{3}\right)=4$ and $z=5$.
3. (a) Sketch the curve with the following parametrization and label the start and end points with [10 pts] their coordinates:

$$
\mathbf{r}(t)=2 \cos t \mathbf{i}-3 \mathbf{j}+5 \sin t \mathbf{k} \text { with } \frac{\pi}{2} \leq t \leq 2 \pi
$$

Solution:

(b) Find a parametrization of the part of the parabola $y=4-x^{2}$ in the second quadrant along [10 pts] with the line segment joining the endpoints.
Solution: For the parabolic part we can use

$$
\mathbf{r}(t)=t \mathbf{i}+\left(4-t^{2}\right) \mathbf{j} \text { with }-2 \leq t \leq 0
$$

and for the linear part

$$
\mathbf{r}(t)=(-2+2 t) \mathbf{i}+(0+4 t) \mathbf{j} \text { with } 0 \leq t \leq 1
$$

4. Suppose a curve has $\mathbf{v}(t)=3 t^{2} \mathbf{i}+5 t \mathbf{j}+(1-t) \mathbf{k}$.
(a) Find the tangent vector $\mathbf{T}(2)$.

Solution: We have:

$$
\mathbf{T}(2)=\frac{\mathbf{v}(2)}{\|\mathbf{v}(2)\|}=\frac{12 \mathbf{i}+10 \mathbf{j}-1 \mathbf{k}}{\sqrt{144+100=1}}
$$

(b) Find the tangential component of acceleration at $t=2$.

Solution: We have

$$
\begin{array}{r}
\mathbf{v}(2)=12 \mathbf{i}+10 \mathbf{j}-1 \mathbf{k} \\
\mathbf{a}(t)=6 t \mathbf{i}+5 \mathbf{j}-1 \mathbf{k} \\
\mathbf{a}(2)=12 \mathbf{i}+5 \mathbf{j}-1 \mathbf{k}
\end{array}
$$

and so

$$
\mathbf{a}_{\mathbf{T}}=\frac{\mathbf{v}(2) \cdot \mathbf{a}(2)}{\|\mathbf{v}(2)\|}=\frac{144+50+1}{\sqrt{144+100+1}}
$$

5. Find the distance between the point $(1,2,3)$ and the plane containing the point $(0,0,1)$ and the line $x=1+2 t, y=5-t, z=t$.
Solution: First we find \mathbf{n} for the plane. The point $(1,5,0)$ is on the line and $(0,0,1)$ is on the plane and so $1 \mathbf{i}+5 \mathbf{j}-1 \mathbf{k}$ is parallel to the plane. So is $\mathbf{L}=2 \mathbf{i}-1 \mathbf{j}+1 \mathbf{k}$. Then \mathbf{n} can be the cross product:

$$
\begin{gathered}
1 \mathbf{i}+5 \mathbf{j}-1 \mathbf{k} \\
2 \mathbf{i}-1 \mathbf{j}+1 \mathbf{k} \\
\mathbf{n}=4 \mathbf{i}-3 \mathbf{j}-11 \mathbf{k}
\end{gathered}
$$

Then using $P=(0,0,1)$ and $Q=(1,2,3)$ we have $\overrightarrow{P Q}=1 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$.
Then the distance is

$$
\frac{|\overrightarrow{P Q} \cdot \mathbf{n}|}{\|\mathbf{n}\|}=\frac{|(1)(4)+(2)(-3)+(2)(-11)|}{\sqrt{16+9+121}}
$$

