Math 241 Exam 1 Fall 2019 Solutions

Justin Wyss-Gallifent

1. (a) Given the two vectors

$$
\mathbf{a}=2 \mathbf{i}+5 \mathbf{j}+0 \mathbf{k} \text { and } \mathbf{b}=1 \mathbf{i}+0 \mathbf{j}-2 \mathbf{k}
$$

Find the cosine of the angle between them.
Solution: We have:

$$
\begin{aligned}
\cos \theta & =\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|} \\
& =\frac{(2)(1)+(5)(0)+(0)(-2)}{\sqrt{4+25+0} \sqrt{1+0+4}}
\end{aligned}
$$

(b) Find the symmetric equation of the line passing through $(3,2,1)$ and perpendicular to the [10 pts] plane $4 x+2 y-z=1$.
Solution: If the line is perpendicular to the plane then $\mathbf{N}=4 \mathbf{i}+2 \mathbf{j}-1 \mathbf{k}$ may be used for L. Thus:

$$
\frac{x-3}{4}=\frac{y-2}{2}=\frac{z-1}{-1}
$$

2. (a) Explain why the vector valued function $\mathbf{r}(t)=\left(t^{2}-4 t\right) \mathbf{i}+3 \mathbf{j}+\left(t^{3}-12 t\right) \mathbf{k}$ with $0 \leq t \leq 4$ is $\quad[10 \mathrm{pts}]$ piecewise smooth but not smooth.
Solution: We find:

$$
\mathbf{r}^{\prime}(t)=(2 t=4) \mathbf{i}+0 \mathbf{j}+\left(3 t^{2}-12\right) \mathbf{k}
$$

First note that it's continuous.
We find that $r^{\prime}(2)=0$ and 2 is inside $[0,4]$ which ruins smoothness.
However the VVF is smooth on $[0,2]$ and on $[2,4]$ and hence is piecewise smooth.
(b) Find the distance between the point $(1,2,3)$ and the plane $x-y+z=0$.

Solution: We choose a point $P=(0,0,0)$ on the plane and let $Q=(1,2,3)$ then:

$$
\overrightarrow{P Q}=1 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}
$$

and so along with $\mathbf{N}=1 \mathbf{i}-1 \mathbf{j}+1 \mathbf{k}$ we have:

$$
\begin{aligned}
\text { dist } & =\frac{\overrightarrow{P Q} \cdot \mathbf{N}}{\|\mathbf{N}\|} \\
& =\frac{(1)(1)+(2)(-1)+(3)(1)}{\sqrt{1+1+1}}
\end{aligned}
$$

3. (a) Sketch the plane with equation $-10 x+2 y=20$. Label four points with their coordinates.

Solution: The x-intercept is at $(-2,0,0)$ and the y-intercept is at $(0,10,0)$. We extend in the z-direction:

(b) Consider the line with symmetric equation:

$$
\frac{x-3}{2}=\frac{2-z}{5}, y=6
$$

Find the equation of the plane containing the line as well as the point $(1,-1,0)$. Write this in the form $a x+b y+c z=d$.

Solution: Notice that the parametric form might help:

$$
\begin{aligned}
& x=2 t+3 \\
& y=0 t+6 \\
& z=-5 t+2
\end{aligned}
$$

For the line we have $\mathbf{L}=2 \mathbf{i}+0 \mathbf{j}-5 \mathbf{k}$ which is parallel to the plane. If we let $P=(3,6,2)$ and $Q=(1,-1,0)$ then $\overrightarrow{Q P}=2 \mathbf{i}+7 \mathbf{j}+2 \mathbf{k}$ is also parallel.

Thus:

$$
\mathbf{N}=\mathbf{L} \times \overrightarrow{Q P}=35 \mathbf{i}-14 \mathbf{j}+14 \mathbf{k}
$$

So the plane is:

$$
\begin{aligned}
35(x-1)-14(y+1)+14(z-0) & =0 \\
35 x-14 y+14 z & =49
\end{aligned}
$$

4. (a) Sketch the curve with parametrization $\mathbf{r}(t)=-2 \mathbf{i}+(2+2 \cos t) \mathbf{j}+4 \sin t \mathbf{k}$ for $0 \leq t \leq \pi$ and [10 pts] indicate the start point, middle point, and end point with their coordinates.

Solution:

(b) Find the parametrization(s) for the curve consisting of the part of $x^{2}+y^{2}=9$ in the second quadrant along with the line segment joining the end points in a counterclockwise direction.

Solution: The part of the circle will have parametrization:

$$
\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j} \text { with } \frac{\pi}{2} \leq t \leq \pi
$$

while the line segment will have parametrization:

$$
\mathbf{r}(t)=(-3+3 t) \mathbf{i}+3 t \mathbf{j} \text { with } 0 \leq t \leq 1
$$

5. Given the vector-valued function $\mathbf{r}(t)=t^{3} \mathbf{i}-5 t^{2} \mathbf{j}+e^{2-t} \mathbf{k}$
(a) Set up but do not evaluate the integral for the length of the curve with $0 \leq t \leq 4$.

Solution: We have:

$$
\mathbf{r}^{\prime}(t)=3 t^{2} \mathbf{i}-10 t \mathbf{j}-e^{2-t} \mathbf{k}
$$

and so the length would be:

$$
\text { Length }=\int_{0}^{4} \sqrt{\left(3 t^{2}\right)^{2}+(-10 t)^{2}+\left(-e^{2-t}\right)^{2}} d t
$$

(b) Find the tangent vector at $t=2$

Solution: At $t=2$ we have:

$$
\mathbf{r}^{\prime}(2)=12 \mathbf{i}-20 \mathbf{j}-1 \mathbf{k}
$$

and so:

$$
\mathbf{T}(2)=\frac{12 \mathbf{i}-20 \mathbf{j}-1 \mathbf{k}}{\sqrt{144+400+1}}
$$

(c) Find the tangential component of acceleration at $t=2$.

Solution: We have:

$$
\begin{aligned}
& \mathbf{a}(t)=6 t \mathbf{i}-10 \mathbf{j}+e^{2-t} \mathbf{k} \\
& \mathbf{a}(2)=12 \mathbf{i}-10 \mathbf{j}+1 \mathbf{k}
\end{aligned}
$$

Therefore:

$$
a_{T}(2)=\frac{\mathbf{v}(2) \cdot \mathbf{a}(2)}{\|\mathbf{v}(2)\|}=\frac{(12)(12)+(-20)(-10)+(-1)(1)}{\sqrt{144+400+1}}
$$

