MATH 241 Sections $03^{* *}$ Exam 1 Key

1. Given the two vectors:

$$
\begin{aligned}
& \bar{a}=1 \hat{\imath}+8 \hat{\jmath}+4 \hat{k} \\
& \bar{b}=4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}
\end{aligned}
$$

Rewrite \bar{a} as $\bar{a}=\bar{a}_{1}+\bar{a}_{2}$ where \bar{a}_{1} is parallel to \bar{b} and \bar{a}_{2} is perpendicular to \bar{b}. In addition, verify that your final \bar{a}_{1} and \bar{a}_{2} are in fact perpendicular.

Solution:

We have:

$$
\begin{aligned}
\bar{a}_{1} & =\operatorname{Proj} \overline{\bar{b}} \bar{a} \\
& =\frac{\bar{a} \cdot \bar{b}}{\bar{b} \cdot \bar{b}} \bar{b} \\
& =\frac{12}{24}(4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}) \\
& =2 \hat{\imath}+1 \hat{\jmath}-1 \hat{k}
\end{aligned}
$$

Then:

$$
\bar{a}_{2}=\bar{a}-\bar{a}_{1}=-1 \hat{\imath}+7 \hat{\jmath}+5 \hat{k}
$$

We can see that they're perpendicular since:

$$
\bar{a}_{1} \cdot \bar{a}_{2}=(2 \hat{\imath}+1 \hat{\jmath}-1 \hat{k}) \cdot(-1 \hat{\imath}+7 \hat{\jmath}+5 \hat{k})=0
$$

2. Show that the set of points whose distance to $(-10,-5,0)$ is three times their distance to $(6,3,0)$ form a sphere. Write the equation of this sphere in standard sphere form:

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=R^{2}
$$

In addition, draw a reasonable sketch of the sphere.

Solution:

If (x, y, z) is such a point then we have:

$$
\begin{aligned}
\sqrt{(x+10)^{2}+(y+5)^{2}+(z-0)^{2}} & =3 \sqrt{(x-6)^{2}+(y-3)^{2}+(z-0)^{2}} \\
x^{2}+20 x+100+y^{2}+10 y+25+z^{2} & =9\left(x^{2}-12 x+36+y^{2}-6 y+9+z^{2}\right) \\
8 x^{2}-128 x+8 y^{2}-64 y+8 z^{2} & =-280 \\
x^{2}-16 x+y^{2}-8 y+z^{2} & =-35 \\
x^{2}-16 x+64+y^{2}-8 y+16+z^{2} & =45 \\
(x-8)^{2}+(y-4)^{2}+z^{2} & =(\sqrt{45})^{2}
\end{aligned}
$$

3. Find the equation of the plane containing the point $(7,-2,10)$ and containing [10 pts] the line with parametric equations

$$
\begin{aligned}
& x=2+3 t \\
& y=-2 t \\
& z=6+t
\end{aligned}
$$

Write this plane in the form $a x+b y+c z=d$.

Solution:

Assign $P=(7,-2,10)$, pick $Q=(2,0,6)$ and $R=(5,-2,7)$ on the line. Then assign:

$$
\begin{aligned}
& \overline{P Q}=-5 \hat{\imath}+2 \hat{\jmath}-4 \hat{k} \\
& \overline{P R}=-2 \hat{\imath}+0 \hat{\jmath}-3 \hat{k}
\end{aligned}
$$

The plane's normal vector can be calculated as:

$$
\bar{n}=\overline{P Q} \times \overline{P R}=-6 \hat{\imath}-7 \hat{\jmath}+4 \hat{k}
$$

Note: We could have taken \bar{L} from the line as well as $\overline{P Q}$ and done that cross product, too, or several other alternatives.
Then plane is then:

$$
\begin{aligned}
-6(x-7)-7(y+2)+4(z-10) & =0 \\
-6 x-7 y+4 z & =12 \\
6 x+7 y-4 z & =-12
\end{aligned}
$$

4. Given the two planes:

$$
\begin{aligned}
& \mathcal{P}_{1}: 2 x-y+4 z=10 \\
& \mathcal{P}_{2}:-2 x+5 y+z=6
\end{aligned}
$$

Find the symmetric equations of the line where the planes \mathcal{P}_{1} and \mathcal{P}_{2} intersect.

Solution:

We first find a point on both planes. Adding the equations yields:

$$
4 y+5 z=16
$$

We choose $y=4$ and $z=0$. Then the first plane equation gives us $2 x-4+4(0)=$ 10 or $x=7$. Thus our point is $(7,4,0)$.
The direction vector for the line can be calculated by finding the cross product of the planes' normal vectors:

$$
\begin{aligned}
\bar{n}_{1} & =2 \hat{\imath}-1 \hat{\jmath}+4 \hat{k} \\
\bar{n}_{2} & =-2 \hat{\imath}+5 \hat{\jmath}+1 \hat{k} \\
\bar{L}=\bar{n}_{1} \times \bar{n}_{2} & =-21 \hat{\imath}-10 \hat{\jmath}+8 \hat{k}
\end{aligned}
$$

The symmetric equations are then:

$$
\frac{x-7}{-21}=\frac{y-4}{-10}=\frac{z-0}{8}
$$

5. Sketch the three parametrizations given here. Indicate the start and end points with their coordinates and indicate the direction of the curve.
(a) $\bar{r}_{1}(t)=(1+4 \cos t) \hat{\imath}+3 \sin t \hat{\jmath}$
[5 pts]
For: $0 \leq t \leq \frac{3 \pi}{2}$
In 2 D

Solution:

(b) $\bar{r}_{2}(t)=(1+t) \hat{\imath}+(2-3 t) \hat{\jmath}$

For: $1 \leq t \leq 3$
In 2 D

Solution:

(c) $\bar{r}_{3}(t)=|t| \hat{\imath}+0 \hat{\jmath}+t \hat{k}$

For: $-1 \leq t \leq 2$
In 3D

Solution:

6. Consider two curves with parametrizations:

$$
\begin{aligned}
& \bar{r}_{1}(s)=\left(s^{2}+1\right) \hat{\imath}+(1-s) \hat{\jmath}+(2+3 s) \hat{k} \\
& \bar{r}_{2}(t)=(2+15 t) \hat{\imath}-3 t \hat{\jmath}+(5+9 t) \hat{k}
\end{aligned}
$$

These curves meet at two points. Find these points.

Solution:

We equate the components:

$$
\begin{aligned}
s^{2}+1 & =2+15 t \\
1-s & =-3 t \\
2+3 s & =5+9 t
\end{aligned}
$$

The second gives us $s=3 t+1$ which we plug into the first:

$$
\begin{aligned}
(3 t+1)^{2}+1 & =2+15 t \\
9 t^{2}+6 t+2 & =2+15 t \\
9 t^{2}-9 t & =0 \\
9 t(t-1) & =0
\end{aligned}
$$

If $t=0$ then $s=3(0)+1=1$ and if $t=1$ then $s=3(1)+1=4$.
Both pairs satisfy the third equation.
When $t=0$ we get the point $\bar{r}_{2}(0)=2 \hat{\imath}+0 \hat{\jmath}+5 \hat{k}$ so $(2,0,5)$.
When $t=1$ we get the point $\bar{r}_{2}(1)=17 \hat{\imath}-3 \hat{\jmath}+14 \hat{k}$ so $(17,-3,14)$.
7. Given the parametrization $\bar{r}(t)=t \hat{\imath}+t^{2} \hat{\jmath}+t \hat{k}$,
(a) Find $\bar{v}(2)$ and $\bar{a}(2)$.

Solution: We have $\bar{v}(t)=1 \hat{\imath}+2 t \hat{\jmath}+1 \hat{k}$ and so $\bar{v}(2)=1 \hat{\imath}+4 \hat{\jmath}+1 \hat{k}$.
We have $\bar{a}(t)=0 \hat{\imath}+2 \hat{\jmath}+0 \hat{k}$ and so $\bar{a}(2)=0 \hat{\imath}+2 \hat{\jmath}+0 \hat{k}$.
(b) Find $\bar{T}(2)$.

Solution: We have:

$$
\bar{T}(2)=\frac{\bar{v}(2)}{\|\bar{v}(2)\|}=\frac{1 \hat{\imath}+4 \hat{\jmath}+1 \hat{k}}{\sqrt{18}}=\frac{1}{\sqrt{18}} \hat{\imath}+\frac{4}{\sqrt{18}} \hat{\jmath}+\frac{1}{\sqrt{18}} \hat{k}
$$

(c) Find the tangential and normal components of acceleration, a_{T} and a_{N}, at $t=2$.
Solution: We have:

$$
a_{T}=\frac{\bar{v} \cdot \bar{a}}{\|\bar{v}\|}=\frac{8}{\sqrt{18}}
$$

We have:

$$
a_{N}=\frac{\|\bar{v} \times \bar{a}\|}{\|\bar{v}\|}=\frac{\|-2 \hat{\imath}+0 \hat{\jmath}+2 \hat{k}\|}{\sqrt{18}}=\frac{\sqrt{8}}{\sqrt{18}}=\frac{2 \sqrt{2}}{3 \sqrt{2}}=\frac{2}{3}
$$

(d) Using the fact that $\bar{a}=a_{T} \bar{T}+a_{N} \bar{N}$, find $\bar{N}(2)$.

Solution:

We have:

$$
\begin{aligned}
\bar{a} & =a_{T} \bar{T}+a_{N} \bar{N} \\
0 \hat{\imath}+2 \hat{\jmath}+0 \hat{k} & =\frac{8}{\sqrt{18}}\left(\frac{1 \hat{\imath}+4 \hat{\jmath}+1 \hat{k}}{\sqrt{18}}\right)+\frac{2}{3} \bar{N} \\
0 \hat{\imath}+2 \hat{\jmath}+0 \hat{k} & =\frac{8 \hat{\imath}+32 \hat{\jmath}+8 \hat{k}}{18}+\frac{2}{3} \bar{N} \\
0 \hat{\imath}+2 \hat{\jmath}+0 \hat{k} & =\frac{4}{9} \hat{\imath}+\frac{16}{9} \hat{\jmath}+\frac{4}{9} \hat{\jmath}+\frac{2}{3} \bar{N} \\
\frac{2}{3} \bar{N} & =-\frac{4}{9} \hat{\imath}-\frac{2}{9} \hat{\jmath}-\frac{4}{9} \hat{k} \\
\bar{N} & =-\frac{2}{3} \hat{\imath}+\frac{1}{3} \hat{\jmath}-\frac{2}{3} \hat{k}
\end{aligned}
$$

(e) Write down the integral which represents the distance along the curve between $t=0$ and $t=2$. Without calculating this integral explain how you know the value is at least $2 \sqrt{6}$.

Solution:

The integral is $\int_{0}^{2} \sqrt{4 t^{2}+2} d t$.
At $t=0$ the curve is at $(0,0,0)$ and at $t=2$ the curve is at $(2,4,2)$. These points are distance $\sqrt{4+16+4}=\sqrt{24}=2 \sqrt{6}$ apart so the length is at least that.

