Math 241 Exam 1 سom 2020 Solution

ĵust̂̂n Wyss-Gallı̂fent

1. (a) Suppose the points $(1,2,3)$ and $(3,8,7)$ are on opposite sides of a sphere. Write down the equation of the sphere.

Solution:

The center of the sphere is the midpoint $(2,5,5)$ and the radius is the distance from the midpoint to either of the given points (or half the distance between the given points) so the radius is $\sqrt{(1-2)^{2}+(2-5)^{2}+(3-5)^{2}}=\sqrt{14}$ so the equation is

$$
(x-2)^{2}+(y-5)^{2}+(z-5)^{2}=14
$$

(b) Suppose $\mathbf{a}=2 \hat{\boldsymbol{\imath}}+8 \hat{\boldsymbol{\jmath}}+1 \hat{\boldsymbol{k}}$ and $\mathbf{b}=3 \hat{\boldsymbol{\imath}}-4 \hat{\boldsymbol{\jmath}}+7 \hat{\boldsymbol{k}}$. Find the projection of \mathbf{a} onto \mathbf{b}.

Solution:

We have:

$$
\begin{aligned}
\operatorname{Pr}_{\mathbf{b}} \mathbf{a} & =\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} \\
& =\frac{-19}{74}(3 \hat{\imath}-4 \hat{\boldsymbol{\jmath}}+7 \hat{\boldsymbol{k}})
\end{aligned}
$$

2. Find the equation of the plane containing the point $Q=(1,-1,2)$ and containing the line with [20 pts] parametrization $\mathbf{r}(t)=(2 t+1) \hat{\boldsymbol{\imath}}+(t-3) \hat{\boldsymbol{\jmath}}+(4-5 t) \hat{\boldsymbol{k}}$. Write this in the form $a x+b y+c z=d$.

Solution:

If we pick a point $P=(1,-3,4)$ on the line and construct $\overrightarrow{P Q}=0 \hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}-2 \hat{\boldsymbol{k}}$ then with $\mathbf{L}=2 \hat{\boldsymbol{\imath}}+1 \hat{\boldsymbol{\jmath}}-5 \hat{\boldsymbol{k}}$ then we can find the normal vector via:

$$
\overrightarrow{P Q} \times \mathbf{L}=-8 \hat{\boldsymbol{\imath}}-4 \hat{\boldsymbol{\jmath}}-4 \hat{\boldsymbol{k}}
$$

then the plane is

$$
\begin{aligned}
-8(x-1)-4(y+1)-4(z-2) & =0 \\
-8 x-4 y-4 z & =-12
\end{aligned}
$$

3. (a) Write down a parametrization of the straight line from $(1,-4,3)$ to $(8,4,2)$.

Solution:

One answer would be $\mathbf{r}(t)=(1+7 t) \hat{\boldsymbol{\imath}}+(-4+8 t) \hat{\boldsymbol{\jmath}}+(3-t) \hat{\boldsymbol{k}}$ for $0 \leq t \leq 1$.
(b) Find the distance between the parallel planes $2 x+3 y+10 z=10$ and $2 x+3 y+10 z=20$.
[15 pts]

Solution:

If we pick an arbitrary point on the first plane, say $Q=(5,0,0)$, then we can find the distance from Q to the other plane. Since the other plane has $P=(10,0,0)$ and $\mathbf{N}=2 \hat{\boldsymbol{\imath}}+3 \hat{\boldsymbol{\jmath}}+10 \hat{\boldsymbol{k}}$ then we can find $\overrightarrow{P Q}=-5 \hat{\boldsymbol{\imath}}+0 \hat{\boldsymbol{\jmath}}+0 \hat{\boldsymbol{k}}$ and calculate:

$$
\text { distance }=\frac{|\overrightarrow{P Q} \cdot \mathbf{N}|}{\| \mathbf{N}| |}=\frac{|-10|}{\sqrt{113}}
$$

4. Given the curve with parametrization

$$
\mathbf{r}(t)=t \hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}+t^{2} \hat{\boldsymbol{k}} \text { for }-1 \leq t \leq 1
$$

(a) Sketch the curve. Mark the start and end points with their coordinates.

Solution:

(b) Is the parametrization closed or not? Justify.

Solution:

Since $\mathbf{r}(-1)=-1 \hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}+1 \hat{\boldsymbol{k}}$ and $\mathbf{r}(1)=1 \hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}+1 \hat{\boldsymbol{k}}$ and these are different the parametrization is not closed.
(c) Is the parametrization smooth, piecewise smooth or neither? Justify.

Solution:

Since $\mathbf{r}^{\prime}(t)=1 \hat{\boldsymbol{\imath}}+0 \hat{\boldsymbol{\jmath}}+2 t \hat{\boldsymbol{k}}$ is continuous (everywhere) but never $\mathbf{0}$ the parametrization is smooth.
5. Consider the parametrization $\mathbf{r}(t)=t^{2} \hat{\boldsymbol{\imath}}+\left(1-t^{3}\right) \hat{\boldsymbol{\jmath}}+2 \hat{\boldsymbol{k}}$.
(a) Find $\mathbf{T}(1)$.

Solution:

We have $\mathbf{r}^{\prime}(t)=2 t \hat{\boldsymbol{\imath}}-3 t^{2} \hat{\boldsymbol{k}}+0 \hat{\boldsymbol{k}}$ and $\mathbf{r}^{\prime}(1)=2 \hat{\boldsymbol{\imath}}-3 \hat{\boldsymbol{\jmath}}+0 \hat{\boldsymbol{k}}$ and therefore

$$
\mathbf{T}(1)=\frac{2 \hat{\boldsymbol{\imath}}-3 \hat{\boldsymbol{\jmath}}+0 \hat{\boldsymbol{k}}}{\sqrt{13}}
$$

(b) Find the tangential component of acceleration at $t=1$.

Solution:

We already know $\mathbf{v}(1)=2 \hat{\boldsymbol{\imath}}-3 \hat{\boldsymbol{\jmath}}+0 \hat{\boldsymbol{k}}$ and we have $\mathbf{a}(t)=2 \hat{\boldsymbol{\imath}}-6 t \hat{\boldsymbol{\jmath}}+0 \hat{\boldsymbol{k}}$ and so $\mathbf{a}(1)=2 \hat{\boldsymbol{\imath}}-6 \hat{\boldsymbol{\jmath}}+0 \hat{\boldsymbol{k}}$ and hence

$$
a_{\mathbf{T}}=\frac{\mathbf{v}(1) \cdot \mathbf{a}(1)}{\|\mathbf{v}(1)\|}=\frac{22}{\sqrt{13}}
$$

