Math 241 Exam 2 Fall 2014 Partial Solutions

1. (a) Use the gradient to find a vector perpendicular to the graph of the curve $y=x^{3}+x-2$ at the point where $x=2$.
Partial Solutions: Move all the variables to one side and let that side be the function $f(x, y)$. Then find ∇f at $(2,8)$ where the 8 comes from plugging 2 into $y=x^{3}+x-2$.
(b) Suppose the base of a triangle is growing at 2 inches per hour while the height is growing at 3 inches per hour. At what rate is the area growing when the height is 10 inches and the base is 20 inches?
Partial Solutions: Since $A=\frac{1}{2} b h$ we can apply the chain rule since b and h are functions of t.
2. (a) Sketch the graph of the surface $y^{2}=x^{2}+z^{2}$. Write the name.

Partial Solutions: Sketch omitted - this is a double-cone opening both directions around the y-axis with the vertex at the origin.
(b) Sketch the graph of the surface $y=x^{2}$. Write the name.

Partial Solutions: Sketch omitted - this is a parabolic sheet - take $y=x^{2}$ in the $x y$-plane and extend it in the z-direction.
(c) Find the directional derivative of $f(x, y)=y \sin (x y)$ in the direction of $\bar{a}=2 \hat{\imath}+\hat{\jmath}$ at the point ($\frac{\pi}{8}, 2$). Simplify.
Partial Solutions: First make \bar{a} a unit vector then simply apply the formula for the directional derivative.
3. (a) All together on one graph sketch the level curves for $f(x, y)=y-|x|$ at $c=-2,0,2$ and label each with its value of c.
Partial Solutions: Sketches omitted - The curves are $y=|x|-2, y=|x|$ and $y=|x|+2$. These are all absolute value vertical shifts.
(b) Suppose the unit vector \bar{u} makes an angle of 30° with the gradient of a function f at $(1,2)$ and $\|\nabla f(1,2)\|=3$. Find $D_{\bar{u}} f(1,2)$.
Partial Solutions: Remember that $D_{\bar{u}} f(1,2)=\bar{u} \cdot \nabla f(1,2)=\|\bar{u}\|\|\nabla f(1,2)\| \cos \theta$. Then \bar{u} is a unit vector and plug the rest in.
(c) The function $f(x, y)=x^{2} y-2 x^{2}-y^{2}$ has the following:

$$
f_{x x}(x, y)=2 y-4 \quad f_{y y}(x, y)=-2 \quad f_{x y}(x, y)=2 x
$$

There are three critical points at $(0,0),(2,2)$ and $(-2,2)$. Categorize each critical point as a relative maximum, relative minimum or saddle point.
Partial Solutions: This is pretty straightforward since everything is given. Don't get the discriminant incorrect!
4. Find the maximum and minimum values of $f(x, y)=x^{2}+2 y^{2}$ on the quarter circle $x^{2}+y^{2} \leq 4$ with $x, y \geq 0$.
Partial Solutions: The critical point is at $(0,0)$ which is on the edge and $f(0,0)=0$. The edge is composed of three pieces:

- The quarter circle $x^{2}+y^{2}=4$ where $y^{2}=4-x^{2}$ and so $f=x^{2}+2\left(4-x^{2}\right)=8-x^{2}$ with $0 \leq x \leq 2$. What's the max and min?
- The lower line segment (on the x-axis) which is $y=0$ and so $f=x^{2}$ with $0 \leq x \leq 2$. What's the max and min?
- The left line segment (on the y-axis) which is $x=0$ and so $f=2 y^{2}$ with $0 \leq y \leq 2$. What's the max and min?

Pick the max and min from among them all.
5. Let $f(x, y)=x^{2}+6 y^{2}$ and suppose (x, y) is constrained by $x+3 y=10$.
(a) Use Lagrange multipliers to find the minimum of $f(x, y)$ subject to the constraint.

Partial Solutions: The system is:

$$
\begin{aligned}
2 x & =\lambda(1) \\
12 y & =\lambda(3) \\
x+3 y & =10
\end{aligned}
$$

This has only one solution at $(4,2)$.
(b) Explain why $f(x, y)$ has no maximum subject to the constraint.

Partial Solutions: Because on the constraint $x=10-3 y$ and so $f(x, y)=x^{2}+6 y^{2}=$ $(10-3 y)^{2}+6 y^{2}=100-60 y+15 y^{2}$ which can be made as large as we want by making y large.

