Math 241 Exam 2 Fall 2017 Comprehensive Solutions

1. (a) Give the equation of a paraboloid opening down with vertex at $(0,0,1)$.

Solution: There are various options but the most basic would be $z=1-x^{2}-y^{2}$. You could also do things like $z=1-4 x^{2}-4 y^{2}$ and so on, which just stretch the paraboloid vertically.
(b) Use tangent plane approximation to approximate $\sqrt{2.02^{2}+4.95}$.

Solution: The values 2.02 and 4.95 are close to 2 and 5 . We assign $f(x, y)=\sqrt{x^{2}+y}$ and $x_{0}=2$ and $y_{0}=5$ and then we're looking for $f(2.02,4.95)$. Then the formula states that for (x, y) near $\left(x_{0}, y_{0}\right)$ we have:

$$
\begin{aligned}
f(x, y) & \approx f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
f(2.02,4.95) & \approx f(2,5)+f_{x}(2,5)(2.02-2)+f_{y}(2,5)(4.95-5)
\end{aligned}
$$

So we find:

$$
\begin{aligned}
& f(2,5)=\sqrt{2^{2}+5} \\
& f(2,5)=3
\end{aligned}
$$

and:

$$
\begin{aligned}
f_{x}(x, y) & =\frac{1}{2}\left(x^{2}+y\right)^{-1 / 2}(2 x) \\
f_{x}(2,5) & =\frac{1}{2}\left(2^{2}+5\right)^{-1 / 2}(2 x) \\
f_{x}(2,5) & =\frac{2}{3}
\end{aligned}
$$

and:

$$
\begin{aligned}
f_{y}(x, y) & =\frac{1}{2}\left(x^{2}+y\right)^{-1 / 2}(1) \\
f_{y}(2,5) & =\frac{1}{2}\left(2^{2}+5\right)^{-1 / 2}(1) \\
f_{y}(2,5) & =\frac{1}{6}
\end{aligned}
$$

and so:
$f(2.02,4.95) \approx f(2,5)+f_{x}(2,5)(2.02-2)+f_{y}(2,5)(4.95-5) 3+\frac{2}{3}(2.02-2)+\frac{1}{6}(4.95-5)$
2. (a) Sketch the graph of the equation $z=-2+\sqrt{x^{2}+y^{2}}$. Label one point with its coordinates. [5 pts] Name the shape.

Solution:

This is a cone:

(b) Suppose $f(x, y)=x y+y^{2}$. If \bar{u} is a unit vector which makes an angle of $\pi / 6$ with ∇f at [15 pts] $(2,-1)$, find $D_{\bar{u}} f(2,-1)$.
Solution: We can do:

$$
\begin{aligned}
& D_{\bar{u}} f(x, y)=\bar{u} \cdot \nabla f(x, y) \\
& D_{\bar{u}} f(x, y)=\|\bar{u}\|\|\nabla f(x, y)\| \cos \theta \\
& D_{\bar{u}} f(x, y)=\|\nabla f(x, y)\| \cos \theta
\end{aligned}
$$

In this case we have

$$
\begin{aligned}
\nabla f(x, y) & =f_{x} \hat{\imath}+f_{y} \hat{\jmath} \\
& =y \hat{\imath}+(x+2 y) \hat{\jmath}
\end{aligned}
$$

and so:

$$
\begin{aligned}
D_{\bar{u}} f(x, y) & =\|\nabla f(x, y)\| \cos \theta \\
D_{\bar{u}} f(2,-1) & =\|\nabla f(2,-1)\| \cos \theta \\
& =\|-1 \hat{\imath}+(2+2(-1)) \hat{\jmath}\| \cos (\pi / 6) \\
& =\|-1 \hat{\imath}+0 \hat{\jmath}\| \cos (\pi / 6) \\
& =\sqrt{3} / 2
\end{aligned}
$$

3. (a) Find a vector perpendicular to the graph of the function $f(x, y)=x^{2} y+2 x-y$ at $(-1,2)$.

Solution: The graph of a function of two variables is a surface. In order to get a vector perpendicular to a surface we need to write the surface as the level surface for a function of three variables. So we change $f(x, y)$ to z and rearrange:

$$
\begin{aligned}
f(x, y) & =x^{2} y+2 x-y \\
z & =x^{2} y+2 x-y \\
x^{2} y+2 x-y-z & =0
\end{aligned}
$$

Then we create a new function $g(x, y, z)=x^{2} y+2 x-y-z$ and take its gradient:

$$
\begin{aligned}
g(x, y, z) & =x^{2} y+2 x-y-z \\
\nabla g(x, y, z) & =(2 x y+2) \hat{\imath}+\left(x^{2}-1\right) \hat{\jmath}-1 \hat{k} \\
\nabla g(-1,2, z) & =-2 \hat{\imath}+0 \hat{\jmath}-1 \hat{k}
\end{aligned}
$$

Note that we can find the z that goes with $(-1,2)$ by doing $f(-1,2)$ but we don't actually need to since there's no z in ∇g.
(b) If $z=x^{2}+y$ where $x=\frac{s}{t}$ and $y=s t$, use the Chain Rule to find $\frac{\partial z}{\partial s}$ in terms of s and t.

Solution:

The chart for the chain rule is:

And so we have:

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& =(2 x)\left(\frac{1}{t}\right)+(1)(t) \\
& =\left(2\left(\frac{s}{t}\right)\right)\left(\frac{1}{t}\right)+(1)(t)
\end{aligned}
$$

4. Find the maximum and minimum of $f(x, y)=x^{2}+y^{2}$ where (x, y) is restricted by the filled-in [20 pts] box shown here. Each tick mark is one unit.

Solution:

First we find the critical points in the region. Since:

$$
f_{x}(x, y)=2 x \text { and } f_{y}(x, y)=2 y
$$

there is only one critical point at $(0,0)$. Since it's not in the region we throw it out.
Next we look at the edge. The edge is in four pieces so we must look at them all:

- Top Edge: Here $y=3$ and $-1 \leq x \leq 1$. So then $f=x^{2}+9$ which has a minimum of 9 when $x=0$ and a maximum of 10 when $x= \pm 1$.
- Bottom Edge: Here $y=1$ and $-1 \leq x \leq 1$. So then $f=x^{2}+1$ which has a minimum of 1 when $x=0$ and a maximum of 2 when $x= \pm 1$.
- Left Edge: Here $x=-1$ and $1 \leq y \leq 3$. So then $f=1+y^{2}$ which has a minimum of 2 when $y=1$ and a maximum of 10 when $y=3$.
- Right Edge: Here $x=1$ and $1 \leq y \leq 3$. So then $f=1+y^{2}$ which has a minimum of 2 when $y=1$ and a maximum of 10 when $y=3$.

All together therefore we see a maximum of 10 and a minimum of 1 .
5. Use Lagrange Multipliers to find the maximum value (there is no minimum value) of the function [20 pts] $f(x, y)=x y^{2}$ subject to the constraint $x+y^{2}=2$.
Note: Your system should have three solutions.

Solution:

We have the objective:

$$
f(x, y)=x y^{2}
$$

We have the constraint:

$$
g(x, y)=x+y^{2}
$$

We solve the system:

$$
\begin{aligned}
y^{2} & =\lambda(1) & & \text { (a) This is } f_{x}=\lambda g_{x} \\
2 x y & =\lambda(2 y) & & \text { (b) This is } f_{y}=\lambda g_{y} \\
x+y^{2} & =2 & & \text { (c) This is the constraint. }
\end{aligned}
$$

From (a) we get $\lambda=y^{2}$ which we plug into (b) to get $2 x y=y^{2}(2 y)$ which we factor and solve:

$$
\begin{aligned}
2 x y & =y^{2}(2 y) \\
2 x y-2 y^{3} & =0 \\
2 y\left(x-y^{2}\right) & =0
\end{aligned}
$$

So either $y=-$ or $x=y^{2}$.
If $y=0$ then (c) tells us $x=2$ and we get the point $(2,0)$.
If $x=y^{2}$ then (c) tells us $y^{2}+y^{2}=2$ so $y= \pm 1$. Since $x=y^{2}$ we get the points $(1,1)$ and $(1,-1)$.
We test these points:

- $f(2,0)=0$
- $f(1,1)=1$
- $f(1,-1)=1$

So the maximum is 1 and the minimum is 0 .

