MATH241 Exam 2 Fall 2021 Justin Wyss-Gallifent

Solutions

1. Together in space, sketch the graphs of the two surfaces $x^{2}+z^{2}=16$ and $y=x^{2}+z^{2}$. Describe $\quad[10 \mathrm{pt}]$ the intersection of these two surfaces. Use both words and equations to be precise.

Solution:

They meet when $y=16$ and $x^{2}+z^{2}=16$ which is a circle of radius 4 sitting at $y=16$.
2. Write down the equation of the cylinder with axis $x=1, z=2$ and with radius 3 .

Solution:

The equation is $(x-1)^{2}+(z-2)^{2}=9$.
3. Write down the function $f(x, y)=\ldots$ for the plane with intercepts $(2,0,0),(0,4,0)$, and $(0,0,5)$. [5 pt]

Solution:
The plane has equation:

$$
\frac{1}{2} x+\frac{1}{4} y+\frac{1}{5} z=1
$$

So we rewrite as a function:

$$
\begin{aligned}
\frac{1}{2} x+\frac{1}{4} y+\frac{1}{5} z & =1 \\
\frac{5}{2} x+\frac{5}{4} y+z & =5 \\
z & =5-\frac{5}{2} x-\frac{5}{4} y \\
f(x, y) & =5-\frac{5}{2} x-\frac{5}{4} y
\end{aligned}
$$

4. All together on one set of axes draw the level curves of $f(x, y)=\frac{y}{|x|+1}$ for the values $c=-2,0, \quad[10 \mathrm{pt}]$ and 2. Label each curve with its value of c.

Solution:

The level curves are:

- $c=2: \frac{y}{|x|+1}=2$ and so $y=-2(|x|+1)=-2|x|-2$
- $c=0: \frac{y}{|x|+1}=0$ and so $y=0(|x|+1)=0$
- $c=-2: \frac{y}{|x|+1}=-2$ and so $y=2(|x|+1)=2|x|+2$

Together:

5. Find the equation of the plane tangent to the graph of $f(x, y)=x^{2} y-y$ at the point where $x=2 \quad[10 \mathrm{pt}]$ and $y=-1$. Write it in the form $a x+b y+c z=d$.
Solution:
We put $z=x^{2} y-y$ and rewrite as $x^{2} y-y-z=0$. The gradient of the left side (call it g) is:

$$
\nabla g=(2 x y) \hat{\boldsymbol{\imath}}+\left(x^{2}-1\right) \hat{\boldsymbol{\jmath}}-1 \hat{\boldsymbol{k}}
$$

At our point we get the normal vector:

$$
\mathbf{n}=-4 \hat{\boldsymbol{\imath}}+3 \hat{\boldsymbol{\jmath}}-1 \hat{\boldsymbol{k}}
$$

The point on the graph is:

$$
(2,-1, f(2,-1))=(2,-1,-3)
$$

The plane then has equation:

$$
\begin{aligned}
-4(x-2)+3(y+1)-1(z+3) & =0 \\
-4 x+8+3 y+3-z-3 & =0 \\
-4 x+3 y-z & =-8
\end{aligned}
$$

6. Suppose the location of an object is given by $\mathbf{r}(t)=\left(t^{2}+t\right) \hat{\boldsymbol{\imath}}+e^{2 t-4} \hat{\boldsymbol{\jmath}}$. Suppose the temperature (in ${ }^{\circ} \mathrm{C}$) of the plane (measured in meters) is given by $f(x, y)=x^{2}+x y$
(a) Determine the instantaneous rate of change of temperature in ${ }^{\circ} \mathrm{C} / \mathrm{m}$ that the object is experiencing as it passes through the point $(6,1)$.

Solution:

We have $r^{\prime}(t)=(2 t+1) \hat{\boldsymbol{\imath}}+2 e^{2 t-4} \hat{\boldsymbol{\jmath}}$ and so $r^{\prime}(2)=5 \hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}$. The corresponding unit vector is $\mathbf{u}=\frac{5}{\sqrt{29}} \hat{\boldsymbol{\imath}}+\frac{2}{\sqrt{29}} \hat{\boldsymbol{\jmath}}$. We have $f_{x}(x, y)=2 x+y$ and $f_{y}(x, y)=x$ and so $f_{x}(6,1)=13$ and $f_{y}(6,1)=6$ so the answer is the directional derivative:

$$
D_{\mathbf{u}} f(6,1)=\frac{5}{\sqrt{29}}(13)+\frac{2}{\sqrt{29}}(6)
$$

(b) At the point $(6,1)$ in which direction should it go if it wants to experience the maximum instantaneous change of temperature?

Solution:

If should go in the direction $\nabla f(6,1)$. We have:

$$
\nabla f(x, y)=(2 x+y) \hat{\imath}+x \hat{\boldsymbol{\jmath}}
$$

and so:

$$
\nabla f(6,1)=13 \hat{\imath}+6 \hat{\jmath}
$$

7. Find and categorize all three critical points (as relative maxima, relative minima, or saddle points) [20 pt] for the function $f(x, y)=4 x y-x^{4}-y^{4}$.

Solution:

We have:

$$
\begin{aligned}
& f_{x}=4 y-4 x^{3}=0 \\
& f_{y}=4 x-4 y^{3}=0
\end{aligned}
$$

The first gives us $y=x^{3}$ which we then plug into the second to get

$$
\begin{array}{r}
4 x-4\left(x^{3}\right)^{3}=0 \\
x-x^{9}=0 \\
x\left(1-x^{8}\right)=0
\end{array}
$$

Thus we have $x=0$ and $x= \pm 1$. Along with $y=x^{3}$ this gives us the three critical points $(0,0)$, $(1,1)$, and $(-1,-1)$.
The discriminant is then:

$$
D(x, y)=\left(-12 x^{2}\right)\left(-12 y^{2}\right)-(4)^{2}
$$

We check the points:

- $D(0,0)=-16$ yields a saddle point.
- $D(1,1)=144-16>0$ and $f_{x x}(1,1)=-$ yields a relative maximum.
- $D(-1,-1)=144-16>0$ and $f_{x x}(1,1)=-$ yields a relative maximum.

8. Use the method of Lagrange Multipliers to find the maximum and minimum values of the objective function $f(x, y)=x y$ subject to the constraint $x^{2}+(y+1)^{2}=1$.

Solution:

We put $g(x, y)=2 x+(y+1)^{2}$ and write down our system:

$$
\begin{aligned}
y & =\lambda(2 x) \\
x & =\lambda(2(y+1)) \\
x^{2}+(y+1)^{2} & =1
\end{aligned}
$$

If we multiply the first by $y+1$ and the second by x we get:

$$
\begin{aligned}
y(y+1) & =\lambda(2 x)(y+1) \\
x^{2} & =\lambda(2 x)(y+1)
\end{aligned}
$$

Thus $x^{2}=y^{2}+y$ which we then plug into the third:

$$
\begin{aligned}
y^{2}+y+y^{2}+2 y+1 & =1 \\
2 y^{2}+3 y & =0 \\
y(2 y+3) & =0
\end{aligned}
$$

Thus $y=0$ or $y=-\frac{3}{2}$.
If $y=0$ then we have $x^{2}=0$ and so $x=0$ giving us $(0,0)$.
If $y=-\frac{3}{2}$ then $x^{2}=\left(-\frac{3}{2}\right)^{2}-\frac{3}{2}=\frac{9}{4}-\frac{6}{4}=\frac{3}{4}$ and so $x= \pm \frac{\sqrt{3}}{2}$ giving us $\left(\pm \frac{\sqrt{3}}{2},-\frac{3}{2}\right)$.
We then have:

- $f(0,0)=0$
- $f\left(\frac{\sqrt{3}}{2},-\frac{3}{2}\right)=-\frac{3 \sqrt{3}}{4}$ Minimum!
- $f\left(-\frac{\sqrt{3}}{2},-\frac{3}{2}\right)=\frac{3 \sqrt{3}}{4}$ Maximum!

