MATH241 Exam 2 Fall 2021 Justin Wyss-Gallifent

Solutions

1. Together in space, sketch the graphs of the two surfaces $x^2 + z^2 = 16$ and $y = x^2 + z^2$. Describe [10 pt] the intersection of these two surfaces. Use both words and equations to be precise.

Solution:

They meet when y = 16 and $x^2 + z^2 = 16$ which is a circle of radius 4 sitting at y = 16.

2. Write down the equation of the cylinder with axis x = 1, z = 2 and with radius 3. [5 pt] Solution:

The equation is $(x - 1)^2 + (z - 2)^2 = 9$.

3. Write down the function $f(x, y) = \dots$ for the plane with intercepts (2, 0, 0), (0, 4, 0), and (0, 0, 5). [5 pt] Solution:

The plane has equation:

$$\frac{1}{2}x + \frac{1}{4}y + \frac{1}{5}z = 1$$

So we rewrite as a function:

$$\begin{aligned} \frac{1}{2}x + \frac{1}{4}y + \frac{1}{5}z &= 1\\ \frac{5}{2}x + \frac{5}{4}y + z &= 5\\ z &= 5 - \frac{5}{2}x - \frac{5}{4}y\\ f(x,y) &= 5 - \frac{5}{2}x - \frac{5}{4}y \end{aligned}$$

4. All together on one set of axes draw the level curves of $f(x,y) = \frac{y}{|x|+1}$ for the values c = -2, 0, [10 pt]and 2. Label each curve with its value of c.

Solution:

The level curves are:

- c = 2: $\frac{y}{|x|+1} = 2$ and so y = -2(|x|+1) = -2|x|-2• c = 0: $\frac{y}{|x|+1} = 0$ and so y = 0(|x|+1) = 0
- c = -2: $\frac{y}{|x|+1} = -2$ and so y = 2(|x|+1) = 2|x|+2

Together:

5. Find the equation of the plane tangent to the graph of $f(x, y) = x^2 y - y$ at the point where x = 2 [10 pt] and y = -1. Write it in the form ax + by + cz = d.

Solution:

We put $z = x^2y - y$ and rewrite as $x^2y - y - z = 0$. The gradient of the left side (call it g) is:

$$\nabla g = (2xy)\hat{\imath} + (x^2 - 1)\hat{\jmath} - 1\hat{k}$$

At our point we get the normal vector:

$$\mathbf{n} = -4\hat{\boldsymbol{\imath}} + 3\hat{\boldsymbol{\jmath}} - 1\hat{\boldsymbol{k}}$$

The point on the graph is:

$$(2, -1, f(2, -1)) = (2, -1, -3)$$

The plane then has equation:

$$-4(x-2) + 3(y+1) - 1(z+3) = 0$$

$$-4x + 8 + 3y + 3 - z - 3 = 0$$

$$-4x + 3y - z = -8$$

- 6. Suppose the location of an object is given by $\mathbf{r}(t) = (t^2 + t)\hat{\mathbf{i}} + e^{2t-4}\hat{\mathbf{j}}$. Suppose the temperature (in °C) of the plane (measured in meters) is given by $f(x, y) = x^2 + xy$
 - (a) Determine the instantaneous rate of change of temperature in $^{\circ}C/m$ that the object is experiencing as it passes through the point (6, 1). [15 pt]

Solution:

We have $r'(t) = (2t+1)\hat{\imath} + 2e^{2t-4}\hat{\jmath}$ and so $r'(2) = 5\hat{\imath} + 2\hat{\jmath}$. The corresponding unit vector is $\mathbf{u} = \frac{5}{\sqrt{29}}\hat{\imath} + \frac{2}{\sqrt{29}}\hat{\jmath}$. We have $f_x(x,y) = 2x + y$ and $f_y(x,y) = x$ and so $f_x(6,1) = 13$ and $f_y(6,1) = 6$ so the answer is the directional derivative:

$$D_{\mathbf{u}}f(6,1) = \frac{5}{\sqrt{29}}(13) + \frac{2}{\sqrt{29}}(6)$$

(b) At the point (6,1) in which direction should it go if it wants to experience the maximum [5 pt] instantaneous change of temperature?

Solution:

If should go in the direction $\nabla f(6, 1)$. We have:

$$\nabla f(x,y) = (2x+y)\hat{\imath} + x\hat{\jmath}$$

and so:

$$\nabla f(6,1) = 13\hat{\imath} + 6\hat{\jmath}$$

7. Find and categorize all three critical points (as relative maxima, relative minima, or saddle points) [20 pt] for the function $f(x, y) = 4xy - x^4 - y^4$.

Solution:

We have:

$$f_x = 4y - 4x^3 = 0$$
$$f_y = 4x - 4y^3 = 0$$

The first gives us $y = x^3$ which we then plug into the second to get

$$4x - 4(x^{3})^{3} = 0$$
$$x - x^{9} = 0$$
$$x(1 - x^{8}) = 0$$

Thus we have x = 0 and $x = \pm 1$. Along with $y = x^3$ this gives us the three critical points (0, 0), (1, 1), and (-1, -1).

The discriminant is then:

$$D(x,y) = (-12x^2)(-12y^2) - (4)^2$$

We check the points:

- D(0,0) = -16 yields a saddle point.
- D(1,1) = 144 16 > 0 and $f_{xx}(1,1) = -$ yields a relative maximum.
- D(-1, -1) = 144 16 > 0 and $f_{xx}(1, 1) = -$ yields a relative maximum.

8. Use the method of Lagrange Multipliers to find the maximum and minimum values of the objective [20 pt] function f(x, y) = xy subject to the constraint $x^2 + (y + 1)^2 = 1$.

Solution:

We put $g(x,y) = 2x + (y+1)^2$ and write down our system:

$$y = \lambda(2x)$$
$$x = \lambda(2(y+1))$$
$$x^{2} + (y+1)^{2} = 1$$

If we multiply the first by y + 1 and the second by x we get:

$$y(y+1) = \lambda(2x)(y+1)$$
$$x^2 = \lambda(2x)(y+1)$$

Thus $x^2 = y^2 + y$ which we then plug into the third:

$$y^{2} + y + y^{2} + 2y + 1 = 1$$

 $2y^{2} + 3y = 0$
 $y(2y + 3) = 0$

Thus y = 0 or $y = -\frac{3}{2}$. If y = 0 then we have $x^2 = 0$ and so x = 0 giving us (0, 0). If $y = -\frac{3}{2}$ then $x^2 = (-\frac{3}{2})^2 - \frac{3}{2} = \frac{9}{4} - \frac{6}{4} = \frac{3}{4}$ and so $x = \pm \frac{\sqrt{3}}{2}$ giving us $(\pm \frac{\sqrt{3}}{2}, -\frac{3}{2})$. We then have:

- f(0,0) = 0
- $f\left(\frac{\sqrt{3}}{2}, -\frac{3}{2}\right) = -\frac{3\sqrt{3}}{4}$ Minimum!
- $f\left(-\frac{\sqrt{3}}{2},-\frac{3}{2}\right) = \frac{3\sqrt{3}}{4}$ Maximum!