Math 241 Exam $2 \ldots \infty 20$ Solutions

1. (a) Sketch the surfaces $x^{2}+y^{2}=9$ and $z=\sqrt{x^{2}+y^{2}}$ together. Name the surfaces and describe [12 pts] what the intersection is.

Solution:

(b) Write down the equation of the upper hemisphere with center $(2,3,0)$ and radius 5 .

Solution:

We have:

$$
z=\sqrt{25-(x-2)^{2}-(y-3)^{2}}
$$

2. (a) All together on one set of axes sketch the level curves for $f(x, y)=\frac{x}{|y|+1}$ for $c=-1,0,1,2$. [10 pts] Label each curve with its value of c.
Solution: The level curves are:

$$
\begin{array}{lll}
\frac{x}{|y|+1}=-1 & \rightarrow & x=-|y|-1 \\
\frac{x}{|y|+1}=0 & \rightarrow & x=0 \\
\frac{x}{|y|+1}=1 & \rightarrow & x=|y|+1 \\
\frac{x}{|y|+1}=2 & \rightarrow & x=2|y|+2
\end{array}
$$

The sketches are:

(b) Find the symmetric equation of the line in the plane $y=2$ which is tangent to the intersection of the plane with the function $f(x, y)=3 x^{2}+y^{2}$ at the point $(1,2,7)$.
Solution: We have the point $(1,2,7)$, all we need is a direction vector. Since we are in the plane $y=2$ observe that $f_{x}(x, y)=6 x$ and so $f_{x}(1,2)=6$ which means that instantaneously if x increases by 1 then z increases by 6 . Thus we have $\mathbf{L}=1 \hat{\boldsymbol{\imath}}+0 \hat{\boldsymbol{\jmath}}+6 \hat{\boldsymbol{k}}$ and so the symmetric equations are:

$$
\frac{x-1}{1}=\frac{z-7}{6}, y=2
$$

3. (a) Use tangent plane approximation at $(4,27)$ to approximate the value of $\sqrt{3.9}+\sqrt[3]{28}$.

Solution:

If we put $f(x, y)=\sqrt{x}+\sqrt[3]{y}$. then we want $f(3.9,28)$. Observe that:

$$
\begin{aligned}
f(4,27) & =2+3=5 \\
f_{x}(x, y) & =\frac{1}{2} x^{-1 / 2} \\
f_{x}(4,27) & =\frac{1}{4} \\
f_{y}(x, y) & =\frac{1}{3} y^{-2 / 3} \\
f_{y}(4,27) & =\frac{1}{27}
\end{aligned}
$$

Therefore:

$$
f(3.9,28) \approx 5+\frac{1}{4}(3.9-4)+\frac{1}{27}(28-27)
$$

(b) Suppose the temperature at (x, y) is given by $f(x, y)=x y+x^{2} y$. If an object is following the curve $\mathbf{r}(t)=t^{2} \hat{\boldsymbol{\imath}}+\left(t^{3}-t\right) \hat{\boldsymbol{\jmath}}$, what instantaneous temperature change is the object experiencing with respect to distance at the instant $t=2$?
Solution: At $t=2$ the object is at $\mathbf{r}(2)=4 \hat{\boldsymbol{\imath}}+6 \hat{\boldsymbol{\jmath}}$ or $(4,6)$. Since $\mathbf{r}^{\prime}(t)=2 t \hat{\boldsymbol{\imath}}+\left(3 t^{2}-1\right) \hat{\boldsymbol{k}}$ the direction it is going is $\mathbf{r}^{\prime}(2)=4 \hat{\boldsymbol{\imath}}+11 \hat{\boldsymbol{\jmath}}$. So we want the directional derivative of f in this direction at $(4,6)$. First find the unit vector:

$$
\mathbf{u}=\frac{r^{\prime}(2)}{\left\|\mathbf{r}^{\prime}(2)\right\|}=\frac{4}{137} \hat{\boldsymbol{\imath}}+\frac{11}{137} \hat{\boldsymbol{\jmath}}
$$

Since we have:

$$
\begin{aligned}
& f_{x}(x, y)=y+2 x y \\
& f_{y}(x, y)=x+x^{2}
\end{aligned}
$$

We have:

$$
\begin{aligned}
D_{\mathbf{u}} f(x, y) & =\frac{4}{137}(y+2 x y)+\frac{11}{137}\left(x+x^{2}\right) \\
D_{\mathbf{u}} f(4,6) & =\frac{4}{137}(54)+\frac{11}{137}(20)
\end{aligned}
$$

4. Find all three (guaranteed to be three!) of the critical points for the function:

$$
f(x, y)=x^{2} y-x y+3 y^{2}
$$

For each critical point calculate if it is a relative maximum, relative minimum or saddle point.
Solution: We solve the system:

$$
\begin{align*}
f_{x}=2 x y-y & =0 \tag{1}\\
f_{y}=x^{2}-x+6 y & =0 \tag{2}
\end{align*}
$$

From (1) we get $y(2 x-1)=0$ so $y=0$ or $x=\frac{1}{2}$.
If $y=0$ then (2) gives us $x^{2}-x=0$ or $x(x-1)=0$ so $x=0$ or $x=1$ and we have two points $(0,0)$ and $(1,0)$.
If $x=\frac{1}{2}$ then (2) gives us $\frac{1}{4}-\frac{1}{2}+6 y=0$ so $y=\frac{1}{24}$ and we have one point $\left(\frac{1}{2}, \frac{1}{24}\right)$.
We find the discriminant:

$$
D(x, y)=(2 y)(6)-(2 x-1)^{2}
$$

Then we check the points:

- $(0,0):$ We have $D(0,0)=-$ so $(0,0)$ is a saddle.
- $(1,0)$: We have $D(1,0)=-$ so $(0,0)$ is a saddle.
- $(1 / 2,1 / 24)$: We have $D(1 / 2,1 / 24)=+$ and then $f_{y}(1 / 2,1 / 24)=+$ so $(1 / 2,1 / 24)$ is a relative minimum.

5. Use the method of Lagrange Multipliers to find the maximum and minimum of the function $f(x, y)=x y-2 y$ subject to the constraint $x^{2}+4 y^{2}=4$.

Solution:

We solve the system:

$$
\begin{align*}
y & =\lambda(2 x) \tag{3}\\
x-2 & =\lambda(8 y) \tag{4}\\
x^{2}+4 y^{2} & =4 \tag{5}
\end{align*}
$$

We can rewrite (3) as $(x-2) y=\lambda(2 x)(x-2)$ and (4) as $(x-2) y=\lambda(8 y)(y)$ and so we have:

$$
\begin{aligned}
\lambda(2 x)(x-2) & =\lambda(8 y)(y) \\
\lambda\left(x^{2}-2 x-4 y^{2}\right) & =0
\end{aligned}
$$

Thus either $\lambda=0$ or $x^{2}-2 x-4 y^{2}=0$.

- If $\lambda=0$ then (3) tells us $y=0$ and (4) tells us $x=2$ and $(2,0)$ satisfies (5) so this is one point.
- If $x^{2}-2 x-4 y^{2}=0$ then $4 y^{2}=x^{2}-2 x$ then (5) tells us $x^{2}+x^{2}-2 x=4$ which can be rewritten as $x^{2}-x-2=0$ or $(x-2)(x+1)=0$ so $x=2$ or $x=-1$.
- If $x=2$ then (5) tells us that $y=0$ so we get $(2,0)$ again.
- If $x=-1$ then (5) tells us that $y= \pm \sqrt{3} / 2$ so we get $(-1, \pm \sqrt{3} / 2)$.

We then check these points:

- $(2,0)$: We have $f(2,0)=0$.
- $(-1, \sqrt{3} / 2)$: We have $f(-1, \sqrt{3} / 2)=-3 \sqrt{3} / 2$. Minimum.
- $(-1,-\sqrt{3} / 2)$: We have $f(-1,-\sqrt{3} / 2)=3 \sqrt{3} / 2$. Maximum.

