1. (a) Let R be the region inside $r=1+\sin \theta$, above $y=\frac{3}{4}$ and in the first quadrant.

Draw a picture of R. Set up an iterated integral in polar coordinates for $\iint_{R} x^{2} y d A$.
Partial Solutions: Pictures omitted. The line $y=\frac{3}{4}$ in polar is $r=\frac{3}{4} \csc \theta$ which meets $r=1+\sin \theta$ (which is a cardiod) in the first quadrant at $\theta=\frac{\pi}{6}$. To see this set them equal and solve the icky quadratic which results. The final answer is

$$
\int_{\pi / 6}^{\pi / 2} \int_{\frac{3}{4} \csc \theta}^{1+\sin \theta}(r \cos \theta)^{2}(r \sin \theta) r d r d \theta
$$

(b) Let D be the solid in the first octant, inside the sphere $x^{2}+y^{2}+z^{2}=9$ and below the cone $z=\sqrt{3 x^{2}+3 y^{2}}$. Set up an iterated integral in spherical coordinates for $\iiint_{D} z d V$.
Partial Solutions: Note that the solid is below the cone, which means outside. The cone is $\phi=\frac{\pi}{6}$. The final answer is

$$
\int_{0}^{\pi / 2} \int_{\pi / 6}^{\pi / 2} \int_{0}^{3} \rho \cos \phi \rho^{2} \sin \phi d \rho d \phi d \theta
$$

2. (a) Let R be the region in the first quadrant bounded by the curve $y=9-x^{2}$. Draw a picture of R and then set up an iterated integral for $\iint_{R} x d A$ with R as HS.
Partial Solutions: Pictures omitted. As HS in the first quadrant we need to rewrite $y=9-x^{2}$ as $x=+\sqrt{9-y}$. The final answer is

$$
\int_{0}^{9} \int_{0}^{\sqrt{9-y}} x d x d y
$$

(b) Let R be the region in the second quadrant and bounded by the line $y=x+3$. Draw a picture of R and then set up an iterated integral for $\iint_{R} x^{2}+y^{2} d A$ with R as polar.
Partial Solutions: Pictures omitted. In polar the line is $r \sin \theta=r \cos \theta+3$ or $r=$ $\frac{3}{\sin \theta-\cos \theta}$. The final answer is

$$
\int_{\pi / 2}^{\pi} \int_{0}^{3 /(\sin \theta-\cos \theta)} r^{3} d r d \theta
$$

3. (a) SKIP - From 14.9.
(b) SKIP - From 14.9.
(c) Evaluate the following integral.

$$
\int_{0}^{2} \int_{x}^{2} \sin \left(y^{2}\right) d y d x
$$

Partial Solutions: We need to reparametrize as HS. The result of reparametrizing is

$$
\int_{0}^{2} \int_{0}^{y} \sin \left(y^{2}\right) d x d y
$$

which can be integrated fairly easily.
4. (a) Let D be the solid inside the cylinder $r=\sin \theta$, above $z=0$ and below $z=9-x^{2}-y^{2}$. Draw separate pictures of D and its corresponding R and then set up an iterated integral in cylindrical coordinates for $\iiint_{D} y d V$.
Partial Solutions: Pictures omitted. The final answer is

$$
\int_{0}^{\pi} \int_{0}^{\sin \theta} \int_{0}^{9-r^{2}} r^{2} \sin \theta d z d r d \theta
$$

(b) Evaluate the integral

$$
\int_{0}^{1} \int_{x}^{0} \int_{0}^{x+y} y d z d y d x
$$

Partial Solutions: Straightforward integral.
5. Perform a change of variables to rewrite the integral $\iint_{R} x d A$, where R is the region bounded by the lines $y=\frac{1}{x}, y=\frac{2}{x}, y=x$ and $y=4 x$. Draw a picture of R, your new region S and write the new integral as an iterated double integral in u and v.
Partial Solutions: Pictures omitted. Rewrite the curves as $x y=1, x y=2, \frac{y}{x}=1$ and $\frac{y}{x}=4$. Set $u=x y$ and $v=\frac{y}{x}$. The Jacobian is $J(x, y)=\frac{1}{2 v}$ which you can either get with the shortcut $J(x, y)=1 \div J(u, v)$ or by solving for $x=$ and $y=$ and finding $J(x, y)$ directly.
In any case we need x so we observe $v=\frac{y}{x}$ so that $y=x v$ and then $u=x y=x(x v)=x^{2} v$ so finally $x=\sqrt{u / v}$.
The intermediate answer is:

$$
\iint_{S} \sqrt{u / v}\left|\frac{1}{2 v}\right| d A
$$

The final answer is:

$$
\int_{1}^{2} \int_{1}^{4} \sqrt{u / v}\left|\frac{1}{2 v}\right| d v d u
$$

