[10 pts]

1. (a) Let R be the region inside $r = 1 + \sin \theta$, above $y = \frac{3}{4}$ and in the first quadrant. [10 pts] Draw a picture of R. Set up an iterated integral in polar coordinates for $\iint_{\Omega} x^2 y \, dA$.

Partial Solutions: Pictures omitted. The line $y = \frac{3}{4}$ in polar is $r = \frac{3}{4} \csc \theta$ which meets $r = 1 + \sin \theta$ (which is a cardiod) in the first quadrant at $\theta = \frac{\pi}{6}$. To see this set them equal and solve the icky quadratic which results. The final answer is

$$\int_{\pi/6}^{\pi/2} \int_{\frac{3}{4}\csc\theta}^{1+\sin\theta} (r\cos\theta)^2 (r\sin\theta)r \ dr \ d\theta$$

(b) Let D be the solid in the first octant, inside the sphere $x^2 + y^2 + z^2 = 9$ and below the cone $z = \sqrt{3x^2 + 3y^2}$. Set up an iterated integral in spherical coordinates for $\iiint_D z \, dV$. [10 pts]

Partial Solutions: Note that the solid is below the cone, which means outside. The cone is $\phi = \frac{\pi}{6}$. The final answer is

$$\int_{0}^{\pi/2} \int_{\pi/6}^{\pi/2} \int_{0}^{3} \rho \cos \phi \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta$$

2. (a) Let R be the region in the first quadrant bounded by the curve $y = 9 - x^2$. Draw a [10 pts] picture of R and then set up an iterated integral for $\iint_{D} x \, dA$ with R as HS.

Partial Solutions: Pictures omitted. As HS in the first quadrant we need to rewrite $y = 9 - x^2$ as $x = +\sqrt{9-y}$. The final answer is

$$\int_0^9 \int_0^{\sqrt{9-y}} x \, dx \, dy$$

(b) Let R be the region in the second quadrant and bounded by the line y = x + 3. Draw a [10 pts] picture of R and then set up an iterated integral for $\iint_R x^2 + y^2 dA$ with R as polar.

Partial Solutions: Pictures omitted. In polar the line is $r \sin \theta = r \cos \theta + 3$ or $r = \frac{3}{\sin \theta - \cos \theta}$. The final answer is

$$\int_{\pi/2}^{\pi} \int_{0}^{3/(\sin\theta - \cos\theta)} r^3 dr d\theta$$

3. (a) SKIP - From 14.9.

- (b) SKIP From 14.9.
- (c) Evaluate the following integral.

$$\int_0^2 \int_x^2 \sin(y^2) \, dy \, dx$$

Partial Solutions: We need to reparametrize as HS. The result of reparametrizing is

$$\int_0^2 \int_0^y \sin(y^2) \, dx \, dy$$

which can be integrated fairly easily.

4. (a) Let D be the solid inside the cylinder r = sin θ, above z = 0 and below z = 9 − x² − y². [10 pts] Draw separate pictures of D and its corresponding R and then set up an iterated integral in cylindrical coordinates for ∬∫ y dV.

Partial Solutions: Pictures omitted. The final answer is

$$\int_{0}^{\pi} \int_{0}^{\sin\theta} \int_{0}^{9-r^{2}} r^{2} \sin\theta \, dz \, dr \, d\theta$$

$$\int_{0}^{1} \int_{x}^{0} \int_{0}^{x+y} y \, dz \, dy \, dx$$
[10 pts]

 $J_0 J_x$

Partial Solutions: Straightforward integral.

5. Perform a change of variables to rewrite the integral $\iint_R x \, dA$, where *R* is the region bounded [20 pts] by the lines $y = \frac{1}{x}$, $y = \frac{2}{x}$, y = x and y = 4x. Draw a picture of *R*, your new region *S* and write the new integral as an iterated double integral in *u* and *v*.

Partial Solutions: Pictures omitted. Rewrite the curves as xy = 1, xy = 2, $\frac{y}{x} = 1$ and $\frac{y}{x} = 4$. Set u = xy and $v = \frac{y}{x}$. The Jacobian is $J(x, y) = \frac{1}{2v}$ which you can either get with the shortcut $J(x, y) = 1 \div J(u, v)$ or by solving for x = and y = and finding J(x, y) directly.

In any case we need x so we observe $v = \frac{y}{x}$ so that y = xv and then $u = xy = x(xv) = x^2v$ so finally $x = \sqrt{u/v}$.

The intermediate answer is:

(b) Evaluate the integral

$$\iint_S \sqrt{u/v} \left| \frac{1}{2v} \right| \ dA$$

The final answer is:

$$\int_{1}^{2} \int_{1}^{4} \sqrt{u/v} \left| \frac{1}{2v} \right| dv du$$