1. Let R be the region bounded by the lines $y=x, y=12-2 x$ and $x=0$. Evaluate and simplify $\quad[20 \mathrm{pts}]$ the integral $\iint_{R} x d A$.
This is the only integral you need to evaluate/simplify!

Solution:

The functions meet at $x=4$ and vertically simple is easiest. We have:

$$
\begin{aligned}
\int_{R} x d A & =\int_{0}^{4} \int_{x}^{12-2 x} x d y d x \\
& =\left.\int_{0}^{4} x y\right|_{x} ^{12-2 x} d x \\
& =\int_{0}^{4} x(12-2 x)-x(x) d x \\
& =\int_{0}^{4} 12 x-2 x^{2}-x^{2} d x \\
& =\int_{0}^{4} 12 x-3 x^{2} d x \\
& =6 x^{2}-\left.x^{3}\right|_{0} ^{4} \\
& =6(4)^{2}-(4)^{3} \\
& =16(6-4) \\
& =32
\end{aligned}
$$

2. (a) Let R be the region inside $r=2 \cos \theta$ and outside $r=1$. Write down an iterated double [10 pts] integral in polar coordinates for $\iint_{R} \frac{y}{x} d A$. Do not evaluate.

Solution:

The solution is:

$$
\int_{-\pi / 3}^{\pi / 3} \int_{1}^{2 \cos \theta} \frac{r \sin \theta}{r \cos \theta} r d r d \theta
$$

(b) Let D be the solid inside the cylinder $r=\sin \theta$, above the $x y$-plane, and below the paraboloid $z=100-x^{2}-y^{2}$. Set up an iterated triple integral in cylindrical coordinates for $\iiint_{D} z d V$. Do not evaluate.

Solution:

The solution is:

$$
\int_{0}^{\pi} \int_{0}^{\sin \theta} \int_{0}^{100-r^{2}} z r d z d r d \theta
$$

3. (a) Reparametrize the following polar iterated integral as a vertically simple iterated integral. Do not evaluate.

$$
\int_{\pi / 4}^{\pi / 2} \int_{0}^{2} r \cos \theta r d r d \theta
$$

Solution:

The region R is inside the circle $r=2$, or $x^{2}+y^{2}=4$, above the line $y=x$ and to the right of the line $x=0$. The new integral is:

$$
\int_{0}^{\sqrt{2}} \int_{x}^{\sqrt{4-x^{2}}} x d y d x
$$

(b) Let D be the solid below the cone $z=\sqrt{x^{2}+y^{2}}$, above the $x y$-plane, and inside the cylinder $x^{2}+y^{2}=4$. Write down an iterated triple integral in spherical coordinates for $\iiint_{D} x d V$. Do not evaluate.
Solution:
The solution is:

$$
\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{2 \csc \phi} \rho \sin \phi \cos \theta \rho^{2} \sin \phi d \rho d \phi d \theta
$$

4. (a) Let Σ be the portion of the plane $y+z=9$ inside the cylinder $x^{2}+z^{2}=9$, Write down [5 pts] a parametrization of Σ.

Solution:

The cleanest solution is:

$$
\begin{gathered}
\mathbf{r}(t)=r \cos \theta \mathbf{i}+(9-r \sin \theta) \mathbf{j}+r \sin \theta \mathbf{k} \\
0 \leq \theta \leq 2 \pi \\
0 \leq r \leq 3
\end{gathered}
$$

(b) Let D be the solid bounded by the planes $y=x, y=2 x, y=6, z=0$ and $z=10$. Set up [15 pts] the iterated triple integral in rectangular coordinates for $\iiint_{D} z^{2} d V$. Horizontally simple is best. Do not evaluate.

Solution:

The solution is:

$$
\int_{0}^{6} \int_{y / 2}^{y} \int_{0}^{10} z^{2} d z d x d y
$$

5. Let R be the region in the first quadrant bounded by the functions $y=\frac{1}{x}, y=\frac{5}{x}, y=\frac{1}{4} x$, and [20 pts] $y=3 x$. Use a change of variables to convert the integral

$$
\iint_{R} y^{2} d A
$$

into an iterated double integral over a rectangular region. Do not evaluate.

Solution:

We rewrite the functions as: $x y=1, x y=5, \frac{y}{x}=\frac{1}{4}$ and $\frac{y}{x}=3$.
We assign $u=x y$ and $v=\frac{y}{x}=x^{-1} y$.
The new region S is then bounded by the lines $u=1, u=5, v=\frac{1}{4}$ and $v=3$.
Noting that $u v=y^{2}$ we don't necessarily need to solve for x and y and so:

$$
\begin{aligned}
J & =1 \div\left|\begin{array}{rr}
\partial u / \partial x & \partial u / \partial y \\
\partial v / \partial x & \partial v / \partial y
\end{array}\right| \\
& =1 \div\left|\begin{array}{rr}
y & x \\
-x^{-2} y & x^{-1}
\end{array}\right| \\
& =1 \div\left(2 x^{-1} y\right) \\
& =\frac{x}{2 y} \\
& =\frac{1}{2 v}
\end{aligned}
$$

Then we have:

$$
\iint_{R} y^{2} d A=\iint_{S} u v\left|\frac{1}{2 v}\right| d A=\int_{1}^{5} \int_{1 / 4}^{3} \frac{u}{2} d v d u
$$

