MATH241 Exam 3 Fall 2021 (Justin Wyss-Gallifent)

Solutions

1. The following integral can be evaluated without integrating but by figuring out the volume of the [5 pts] shape. Describe the shape and give the numerical value of the integral.

$$
\int_{-2}^{2} \int_{1}^{7} \sqrt{4-x^{2}} d y d x
$$

Solution:

This is the volume of a half-cylinder of radius 2 with length 6 . Thus the volume is:

$$
\frac{1}{2} \pi 2^{2} \cdot 6
$$

2. Evaluate the following iterated double integral:

$$
\int_{0}^{1} \int_{0}^{y} 4 x-y d x d y
$$

You Should Evaluate This Integral!

Solution:

We have:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{y} 4 x-y d x d y & =\int_{0}^{1} 2 x^{2}-\left.x y\right|_{0} ^{y} d y \\
& =\int_{0}^{1} 2 y^{2}-y^{2} d y \\
& =\int_{0}^{1} y^{2} d y \\
& =\left.\frac{1}{3} y^{3}\right|_{0} ^{1} \\
& =\frac{1}{3}
\end{aligned}
$$

3. Let R be the 2 D region between the graphs of $y=5-x^{2}$ and $y=2 x$. Write down the iterated [10 pts] double integral for $\iint_{R} x y d A$, treating R as vertically simple.

You Should Not Evaluate Your Resulting Integral!

Solution:

The graphs meet at:

$$
\begin{aligned}
5-x^{2} & =2 x \\
x^{2}+2 x-5 & =0 \\
x & =\frac{-2 \pm \sqrt{2^{2}-4(1)(-5)}}{2} \\
& =\frac{-2 \pm \sqrt{24}_{2}^{2}}{} \\
& =\frac{-2 \pm \sqrt{2} \sqrt{6}}{2} \\
& =-1 \pm \sqrt{6}
\end{aligned}
$$

So the integral is:

$$
\iint_{R} x y d A=\int_{-1-\sqrt{6}}^{-1+\sqrt{6}} \int_{2 x}^{5-x^{2}} x y d y d x
$$

4. Write down a parametrization $\mathbf{r}(?, ?)=\ldots$ of the part of the cylinder $x^{2}+y^{2}=9$ between $z=1$ and $z=3$ and which is NOT in the first octant.

Solution:

The clearest is:

$$
\begin{gathered}
\mathbf{r}(\theta, z)=3 \cos \theta \hat{\boldsymbol{\imath}}+3 \sin \theta \hat{\boldsymbol{\jmath}}+z \hat{\boldsymbol{k}} \\
\frac{\pi}{2} \leq \theta \leq 2 \pi \\
1 \leq z \leq 3
\end{gathered}
$$

5. Let D be the 3D solid object in the first octant and bounded by the planes $y=4, y=x, y=2 x$, and $x+y+z=10$. Write down an iterated triple integral in rectangular coordinates for the volume of D.

You Should Not Evaluate Your Resulting Integral!

Solution:

The corresponding region in the $x y$-plane is horizontally simple between $y=0$ and $y=4$ with $x=\frac{1}{2} y$ on the left and $x=y$ on the right.
Thus we have:

$$
\int_{0}^{4} \int_{\frac{1}{2} y}^{y} \int_{0}^{10-x-y} 1 d z d y d x
$$

6. Let D be the 3D solid object above the $x y$-plane, inside the cylinder $x^{2}+y^{2}=4$ and below/outside $\quad[20 \mathrm{pts}]$ the cone $z=\sqrt{\frac{x^{2}+y^{2}}{3}}$. If the density of D at the point (x, y, z) equals $x^{2} z$, write down the iterated triple integral in spherical coordinates for the mass of D.

You Should Not Evaluate Your Resulting Integral!

Solution:

The cone is $\phi=\pi / 3$ and the cylinder is $\rho^{2} \sin ^{2} \phi=4$ or $\rho=2 \csc \phi$. The integral is then:

$$
\int_{0}^{2 \pi} \int_{\pi / 3}^{\pi / 2} \int_{0}^{2 \csc \phi}(\rho \sin \phi \cos \theta)^{2}(\rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

7. Convert the following integral to an iterated double integral in polar coordinates.

$$
\int_{1}^{2} \int_{-\sqrt{1-(x-1)^{2}}}^{+\sqrt{1-(x-1)^{2}}} x d y d x
$$

You Should Not Evaluate Your Resulting Integral!

Solution:

The region is inside the right-half of the circle $(x-1)^{2}+y^{2}=1$, or $r=2 \cos \theta$. The far function is then $r=2 \cos \theta$ and the near function is $x=1$, or $r \cos \theta=1$ or $r=\sec \theta$. These meet at $\theta= \pm \pi / 4$.

Thus we have:

$$
\int_{1}^{2} \int_{-\sqrt{1-(x-1)^{2}}}^{+\sqrt{1-(x-1)^{2}}} x d y d x=\int_{-\pi / 4}^{\pi / 4} \int_{\sec \theta}^{2 \cos \theta} r \cos \theta(r) d r d \theta
$$

8. Let R be the 2 D region bounded by the three lines:

$$
\begin{gathered}
y=x+1 \\
y=3 x \\
y=4 x
\end{gathered}
$$

Use the change of variables $x=u+v$ and $y=u+4 v$ to convert the following integral to a double iterated integral in the $u v$-plane.

$$
\iint_{R} y d A
$$

You Should Not Evaluate Your Resulting Integral!

Solution:

The three lines change as follows:
$y=x+1 \Rightarrow u+4 v=u+v+1 \Rightarrow 3 v=1 \Rightarrow v=1 / 3$
$y=3 x \Rightarrow u+4 v=3(u+v) \Rightarrow v=2 u$
$y=4 x \Rightarrow u+4 v=4(u+v) \Rightarrow u=0$
Thus the new region S is bounded by these lines. Note that the lines $v=1 / 3$ and $v=2 u$ meet when $2 u=1 / 3$ so $u=1 / 6$.
The Jacobian is:

$$
\left|\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right|=3
$$

Hence we have:

$$
\begin{aligned}
\iint_{R} x d R & =\iint_{S}(u+4 v)|3| d A \\
& =3 \int_{0}^{1 / 6} \int_{2 u}^{1 / 3} u+4 v d v d u
\end{aligned}
$$

