1. (a) Reparametrize the following integral as vertically simple and then evaluate.

This is the only integral you need to evaluate.

$$
\int_{0}^{4} \int_{\frac{1}{2} y}^{\sqrt{y}} x d x d y
$$

Solution: Picture omitted. We have:

$$
\begin{aligned}
\int_{0}^{4} \int_{\frac{1}{2} y}^{\sqrt{y}} x d x d y & =\int_{0}^{2} \int_{x^{2}}^{2 x} x d y d x \\
& =\left.\int_{0}^{2} x y\right|_{x^{2}} ^{2 x} d x \\
& =\int_{0}^{2} x(2 x)-x\left(x^{2}\right) d x \\
& =\int_{0}^{2} 2 x^{2}-x^{3} d x \\
& =\frac{2}{3} x^{3}-\left.\frac{1}{4} x^{4}\right|_{0} ^{2} \\
& =\frac{2}{3}(2)^{3}-\frac{1}{4}(2)^{4}
\end{aligned}
$$

(b) Parametrize the part of the cylinder $x^{2}+z^{2}=9$ between $y=0$ and $y=5$.

Solution: One possibility is:

$$
\begin{gathered}
\bar{r}(y, \theta)=3 \cos \theta \hat{\imath}+y \hat{\jmath}+3 \sin \theta \hat{k} \\
0 \leq y \leq 5 \\
0 \leq \theta \leq 2 \pi
\end{gathered}
$$

2. (a) Let R be the region between the functions $y=x^{2}$ and $y=8-x^{2}$. Set up the iterated double integral in rectangular coordinates for $\iint_{R} y d A$.
Do not evaluate.
Solution: The functions meet where $x^{2}=8-x^{2}$ or $2 x^{2}=8$ or $x= \pm 2$ and so we get

$$
\int_{-2}^{2} \int_{x^{2}}^{8-x^{2}} y d y d x
$$

(b) Let R be the region inside the circle $r=4$ and to the right of the line $x=2$. Set up the iterated double integral in polar coordinates for $\iint_{R} y d A$.
Do not evaluate.
Solution: The line has polar equation $r \cos \theta=2$ or $r=2 \sec \theta$. This meets the circle where $2 \sec \theta=4$ or $\cos \theta=\frac{1}{2}$ or $\theta= \pm \frac{\pi}{3}$ so we get

$$
\int_{-\pi / 3}^{\pi / 3} \int_{2 \sec \theta}^{4} r \sin \theta r d r d \theta
$$

3. Let D be the solid inside the cylinder $(x-2)^{2}+y^{2}=4$ and between the planes $z=1$ and $z=7+x$. [20 pts] Write down the iterated triple integral in cylindrical coordinates for the volume of D.
Do not evaluate.
Solution: The cylinder in polar is $r=4 \cos \theta$ for $-\pi / 2 \leq \theta \leq \pi / 2$ and so we have:

$$
\iiint_{D} 1 d V=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{4 \cos \theta} \int_{1}^{7+r \cos \theta} r d z d r d \theta
$$

4. Let D be the solid outside the cylinder $x^{2}+y^{2}=4$ and inside the sphere $x^{2}+y^{2}+z^{2}=16$. If the mass of D at a point is given by the function $f(x, y, z)=x^{2} z^{2}$, write down the iterated triple integral in spherical coordinates for the mass of D.
Do not evaluate.
Solution: The cylinder has equation $\rho^{2} \sin ^{2} \phi=4$ or $\rho \sin \phi=2$ or $\rho=2 \csc \phi$ and the sphere has equation $\rho=4$. They meet where $4 \sin \phi=2$ or $\sin \phi=\frac{1}{2}$ or $\phi=\pi / 6$ and $\phi=5 \pi / 6$. Therefore:

$$
\iiint_{D} x^{2} z^{2} d V=\int_{0}^{2 \pi} \int_{\pi / 6}^{5 \pi / 6} \int_{2 \csc \phi}^{4}(\rho \sin \phi \cos \theta)^{2}(\rho \cos \phi)^{2} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

5. Let R be the region in the first quadrant bounded by the lines $y=x, y=3 x, y=\frac{1}{x}$ and $y=\frac{5}{x}$. [20 pts] Perform a change of variables to rewrite $\iint_{R} x y d A$ as an iterated integral over a rectangle in the $u v$-plane.
Do not evaluate.
Solution: The lines are $y / x=1, y / x=3, x y=1$ and $x y=5$ so we set $u=y / x$ and $v=x y$ so that S is the rectangle bounded by the lines $u=1, u=3, v=1$ and $v=5$.
We then have integrand $x y=v$ and Jacobian

$$
J(x, y)=1 \div J(u, v)=\operatorname{det}\left[\begin{array}{cc}
-y / x^{2} & 1 / x \\
y & x
\end{array}\right]=1 \div(-2 y / x)=1 \div(-2 u)=-\frac{1}{2} u
$$

so then

$$
\iint_{R} x y d A=\iint_{S} v\left|-\frac{1}{2} u\right| d A=\int_{1}^{3} \int_{1}^{5} \frac{1}{2} u v d v d u
$$

