Directions: You may use any resources except asking other people. Answers should be neat and tidy and complete.

1. Consider the integrals:

$$
A=\int_{0}^{1} \int_{0}^{x} x^{2} y d y d x \quad \text { and } \quad B=\int_{0}^{2} \int_{0}^{x} x^{2} y d y d x
$$

(a) Either $A<B, A=B$ or $A>B$. Without calculating either integral explain in a few sentences which is true and why. You may use pictures too if you feel it helps.
(b) Calculate both integrals. Were you correct?
2. Let R be the region inside $r=2 \cos \theta$ and to the right of $x=1$. Consider the integral:

$$
\iint_{R} x d A
$$

(a) Draw a picture of R.
(b) Parametrize R as polar and write down the corresponding iterated integral. Do not evaluate.
(c) Parametrize R as vertically simple and write down the corresponding iterated integral. Do not evaluate.
(d) Parametrize R as horizontally simple and write down the corresponding iterated integral. Do not evaluate.
3. Let D be the solid above the cone $\phi=\phi_{0}$ and inside the sphere of radius $\rho=\rho_{0}$. Here both ϕ_{0} and ρ_{0} are unknown constants.
(a) Use a triple integral in spherical coordinates to find a formula for the volume of D. Your answer will have ϕ_{0} and ρ_{0} in it.
(b) When $\phi_{0}=\pi / 2$ and $\rho_{0}=3$ what does D look like? When you plug these into your formula do you get the answer you expect? Explain in a sentence or two.
(c) When $\phi_{0}=\pi$ and $\rho_{0}=5$ what does D look like? When you plug these into your formula do you get the answer you expect? Explain in a sentence or two.
(d) Explain in a few sentences why cylindrical coordinates would be a really difficult way to do part (a).
4. Let R be the region bounded by the lines $y=x, y=x-4, y=-x$ and $y=-x+4$. Consider [25pts] the integral:

$$
\iint_{R} x d A
$$

(a) Parametrize R using two vertically simple regions and evaluate.
(b) Use a change of variables to rewrite R as a square in the $u v$-plane and evaluate.
(c) These values should be the same. Are they?

