Math 241 Exam 4 Fall 2019 Solutions

Please put problem 1 on answer sheet 1

Justin Wyss-Gallifent

1. Consider the following three pictures of vector fields. Each axis goes from -3 to 3 in each of the x and y directions and the vectors are anchored at integer coordinates.

For each of the following (a), (b), and (c), plug in a single point (x, y) which allows you to identify which of the vector fields (I), (II), or (III) matches the vector field.
(a) $\mathbf{F}(x, y)=0.3 y \mathbf{i}-0.3 x \mathbf{j}$

Solution:
For example $\mathbf{F}(3,0)=0 \mathbf{i}-0.9 \mathbf{j}$ which matches (III).
(b) $\mathbf{F}(x, y)=0.3 y \mathbf{i}+0.3 x \mathbf{j}$

Solution:
For example $\mathbf{F}(3,0)=0 \mathbf{i}+0.9 \mathbf{j}$ which matches (I).
(c) $\mathbf{F}(x, y)=0.3 x \mathbf{i}+0.3 \mathbf{j}$

Solution:

For example $\mathbf{F}(3,0)=0.9 \mathbf{i}+0.3 \mathbf{j}$ which matches (II).
2. Parts (a) and (b) are unrelated.
(a) Let Σ be the sphere with equation $x^{2}+y^{2}+z^{2}=9$ with inwards orientation. Evaluate:

$$
\iint_{\Sigma}(x \mathbf{i}+2 y \mathbf{j}+3 z \mathbf{k}) \cdot \mathbf{n} d S
$$

Solution:

By the Divergence Theorem we have:

$$
\begin{aligned}
\iint_{\Sigma}(x \mathbf{i}+2 y \mathbf{j}+3 z \mathbf{k}) \cdot \mathbf{n} d S & =-\iiint_{D}(1+2+3) d V \\
& =-6 \iiint_{D} 1 d V \\
& =-6(\text { Volume }) \\
& =-6\left(\frac{4}{3} \pi(3)^{2}\right)
\end{aligned}
$$

(b) Suppose C is the curve parametrized by $\mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j}+2 \mathbf{k}$ for $0 \leq t \leq 2$. Evaluate:

$$
\int_{C} y d x+z d y+z d z
$$

Solution:

We use the parametrization:

$$
\begin{aligned}
\int_{C} y d x+z d y+z d z & =\int_{0}^{2}(t)(2 t)+(2)(1)+(2)(0) d t \\
& =\int_{0}^{2} 2 t^{2}+2 \\
& =\frac{2}{3} t^{3}+\left.2 t\right|_{0} ^{2} \\
& =\frac{2}{3}(2)^{3}+2(2)
\end{aligned}
$$

3. Suppose Σ is the portion of the parabolic sheet $y=4-x^{2}$ in the first octant and below $z=3$. [20 pts] The mass density at each point is given by $f(x, y, z)=x+y+z$. Set up an iterated integral for the mass of Σ.
Do Not Evaluate This Integral.

Solution:

We parametrize Σ :

$$
\begin{gathered}
\mathbf{r}(x, z)=x \mathbf{i}+\left(4-x^{2}\right) \mathbf{j}+z \mathbf{k} \\
0 \leq x \leq 2 \\
0 \leq z \leq 3
\end{gathered}
$$

Then:

$$
\begin{aligned}
\mathbf{r}_{x} & =1 \mathbf{i}-2 x \mathbf{j}+0 \mathbf{k} \\
\mathbf{r}_{z} & =0 \mathbf{i}+0 \mathbf{j}+1 \mathbf{k} \\
\mathbf{r}_{x} \times \mathbf{r}_{z} & =-2 x \mathbf{i}-1 \mathbf{j}+0 \mathbf{k} \\
\left\|\mathbf{r}_{x} \times \mathbf{r}_{z}\right\| & =\sqrt{4 x^{2}+1}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
\text { Mass } & =\iint_{\Sigma} x+y+z d S \\
& =\iint_{R}\left(x+\left(4-x^{2}\right)+z\right) \sqrt{4 x^{2}+1} d A \\
& =\int_{0}^{2} \int_{0}^{3}\left(x+\left(4-x^{2}\right)+z\right) \sqrt{4 x^{2}+1} d z d x
\end{aligned}
$$

4. Parts (a) and (b) are unrelated.
(a) Let C be the clockwise triangle with vertices $(5,0),(5,10)$, and $(0,10)$. Evaluate:

$$
\int_{C}(x+2 y) d x+(4 x+y) d y
$$

Solution:

By Green's Theorem we have:

$$
\int_{C}(x+2 y) d x+(4 x+y) d y=-\iint_{R} 4-2 d A
$$

Where R is the filled-in triangle. This simplifies to:

$$
-2 \iint_{R} 1 d A=-2(\text { Area })=-2\left(\frac{1}{2}(5)(10)\right)
$$

(b) Let C be the straight-line segment from $(1,2,-2)$ to $(8,0,5)$. Evaluate:

$$
\int_{C}(y \mathbf{i}+x \mathbf{j}+1 \mathbf{k}) \cdot d \mathbf{r}
$$

Solution:

The vector field is conservative with $f(x, y, z)=x y+z$. Thus we have:

$$
\int_{C}(y \mathbf{i}+x \mathbf{j}+1 \mathbf{k}) \cdot d \mathbf{r}=f(8,0,5)-f(1,2,-2)=[(8)(0)+5]-[(1)(2)+(-2)]
$$

5. Suppose C is the intersection of the plane $2 x+y=10$ with the cylinder $x^{2}+z^{2}=9$ with [20 pts] counterclockwise orientation when viewed towards the origin from the positive y-axis. Apply Stokes' Theorem to the integral

$$
\int_{C}(x+y) d x+y^{2} d y+(x y z) d z
$$

and proceed until you have an iterated double integral.

Do Not Evaluate This Integral.

Solution:

By Stokes' Theorem we have:

$$
\int_{C}(x+y) d x+y^{2} d y+(x y z) d z=\iint_{\Sigma}[x z \mathbf{i}-y z \mathbf{j}-1 \mathbf{k}] \cdot \mathbf{n} d S
$$

Where Σ is the part of the plane inside the cylinder, oriented to the left and forward.
We parametrize Σ :

$$
\begin{gathered}
\mathbf{r}(\theta, r)=r \cos \theta \mathbf{i}+(10-2 r \cos \theta) \mathbf{j}+r \sin \theta \mathbf{k} \\
0 \leq \theta \leq 2 \pi \\
0 \leq r \leq 3
\end{gathered}
$$

Then:

$$
\begin{aligned}
\mathbf{r}_{\theta} & =-r \sin \theta \mathbf{i}+2 r \sin \theta \mathbf{j}+r \cos \theta \mathbf{j} \\
\mathbf{r}_{r} & =\cos \theta \mathbf{i}-2 \cos \theta \mathbf{j}+\sin \theta \mathbf{j} \\
\mathbf{r}_{\theta} \times \mathbf{r}_{r} & =2 r \mathbf{i}+r \mathbf{j}+0 \mathbf{k}
\end{aligned}
$$

Which matches Σ 's orientation. Thus we have:

$$
\begin{aligned}
\iint_{\Sigma}[x z \mathbf{i}-y z \mathbf{j}-1 \mathbf{k}] \cdot \mathbf{n} d S & =\iint_{R}[(r \cos \theta)(r \sin \theta) \mathbf{i}-(10-2 r \cos \theta)(r \sin \theta) \mathbf{j}-1 \mathbf{k}] \cdot(2 r \mathbf{i}+r \mathbf{j}+0 \mathbf{k}) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{3} 2 r(r \sin \theta)(r \cos \theta)-r(10-2 r \cos \theta)(r \sin \theta) d r d \theta
\end{aligned}
$$

